Table 2: EC8 rules for detailing and dimensioning of primary columns (secondary columns as in DCL) | Table 2: EC8 rules for detailing and dimens | sioning of primary columns | s (secondary columns | as in DCL) | |---|---|--|--| | | DCH | DCM | DCL | | Currentian sides has have | 0.25m; | | | | Cross-section sides, h_c , $b_c \ge$ | $h_v/10 \text{ if } \theta = P\delta/Vh > 0.1^{(1)}$ | - | | | "critical region" length (1)≥ | $1.5h_c$, $1.5b_c$, $0.6m$, $l_c/5$ | h_c , b_c , 0.45m, $l_c/5$ | h _c , b _c | | | Longitudinal bars (L): | | | | $ ho_{ m min}$ | 1% | | $\frac{0.1 N_d / A_c f_{yd}, 0.2\%^{(0)}}{4\%^{(0)}}$ | | ρ_{max} | 4% | | 4%(0) | | d _{bL} ≥ | 8mm | | | | bars per side ≥ | 3 | | 2 | | Spacing between restrained bars | ≤150mm | ≤200mm | - | | distance of unrestrained bar from nearest restrained bar | ≤150mm | | | | | Transverse bars (w): | | | | Outside critical regions: | | | | | d _{bw} ≥ | 6mm, d _{bL} /4 | | | | spacing s _w ≤ | 20d _{bL} , h _c , b _c , 400mmm | | 12d _{bL} , 0.6h _c , 0.6b _c ,
240mm | | at lap splices, if $d_{bL}>14$ mm: $s_{w} \le$ | 12d _{bL} , 0.6h _c , 0.6b _c , 240mm | | | | Within critical regions: (2) | | | | | $d_{bw} \ge {}^{(3)}$ | 6mm, $0.4(f_{yd}/f_{ywd})^{1/2}d_{bL}$ | 6mm, $d_{bL}/4$ | | | $S_{W} \leq \frac{(3),(4)}{5}$ | $6d_{bL}$, $b_o/3$, 125mm | $8d_{bL}$, $b_o/2$, 175mm | - | | $\omega_{1} > {}^{(5)}$ | 0.08 | - | | | $\alpha_{\text{wd}} = \alpha_{\text{wd}} \alpha_{\text$ | $30\mu_{\phi}^{*}\nu_{d}\epsilon_{sv,d}b_{c}/b_{o}-0.035$ | - | | | In critical region at column base: | | | | | ω _{wd} ≥ | 0.12 | 0.08 | = | | $\alpha\omega_{\rm wd} = \frac{(4),(5),(6),(8),(9)}{(4),(5),(6),(8),(9)}$ | $30\mu_{\phi}\nu_{d}\varepsilon_{sy,d}b_{c'}$ | $30\mu_{\rm b}v_{\rm d}\epsilon_{\rm sy,d}b_{\rm c}/b_{\rm o}\text{-}0.035\qquad \qquad -$ | | | Capacity design check at beam-column | $1.3 \sum M_{Rb} \leq \sum M_{Rc}$ | | | | joints: (10) | No moment in transverse direction of column | | - | | Verification for M_x - M_y - N : | Truly biaxial, or uniaxial with $(M_z/0.7, N)$, $(M_v/0.7, N)$ | | | | Axial load ratio v_d = $N_{Ed}/A_c f_{cd}$ | ≤ 0.55 | ≤ 0.65 | - | | | Shear design: | | | | V _{Ed} seismic ⁽¹¹⁾ | $1.3 \frac{\sum M_{Rc}^{ends}}{l_{cl}} (11)$ | $1.1 \frac{\sum M_{Rc}^{ends}}{l_{cl}} (11)$ | From the analysis for the "seismic design situation" | | V _{Rd,max} seismic (12), (13) | As in EC2: $V_{Rd,max}$ =0.3(1-f _{ck} (MPa)/250)b _{wo} zf _{cd} sin2 δ , with 1 \leq cot δ \leq 2.5 | | | | V _{Rd,s} seismic (12), (13), (14) | As in EC2: $V_{Rd,s} = b_w z \rho_w f_{ywd} \cot \delta + N_{Ed} (h-x)/l_c (^{(13)})$ with $1 \le \cot \delta \le 2.5$ | | | - (0) Note (0) of Table 1 applies. - (1) h_v is the distance of the inflection point to the column end further away, for bending within a plane parallel to the side of interest; l_c is the column clear length. - (2) For DCM: If a value of q not greater than 2 is used for the design, the transverse reinforcement in critical regions of columns with axial load ratio v_d not greater than 0.2 may just follow the rules applying to DCL columns. - For DCH: In the two lower storeys of the building, the requirements on d_{bw} , s_w apply over a distance from the end section not less than 1.5 times the critical region length. - (4) Index c denotes the full concrete section and index o the confined core to the centreline of the hoops; b_ois the smaller side of this core. - (5) ω_{wd} is the ratio of the volume of confining hoops to that of the confined core to the centreline of the hoops, times f_{vd}/f_{cd} . - (6) α is the "confinement effectiveness" factor, computed as $\alpha = \alpha_s \alpha_n$; where: $\alpha_s = (1-s/2b_o)(1-s/2h_o)$ for hoops and $\alpha_s = (1-s/2b_o)$ for spirals; $\alpha_n = 1$ for circular hoops and $\alpha_n = 1 \{b_o/((n_h-1)h_o) + h_o/((n_b-1)b_o)\}/3$ for rectangular hoops with n_b legs parallel to the side of the core with length b_o and n_h legs parallel to the one with length h_o . - (7) For DCH: at column ends protected from plastic hinging through the capacity design check at beam-column joints, μ_{ϕ}^* is the value of the curvature ductility factor that corresponds to 2/3 of the basic value, - q_o , of the behaviour factor used in the design; at the ends of columns where plastic hinging is not prevented because of the exemptions listed in Note (10) below, μ_{ϕ}^* is taken equal to μ_{ϕ} defined in Note (1) of Table 1 (see also Note (9) below); $\epsilon_{sv,d} = f_{vd}/E_s$. - (8) Note (1) of Table 1 applies. - (9) For DCH: The requirement applies also in the critical regions at the ends of columns where plastic hinging is not prevented, because of the waivers listed in Note (10) below. - (10) The capacity design check does not need to be fulfilled at beam-column joints: (a) of the top floor, (b) of the ground storey in two-storey buildings with axial load ratio v_d not greater than 0.3 in all columns, (c) if shear walls resist at least 50% of the base shear parallel to the plane of the frame (wall buildings or wall-equivalent dual buildings), and (d) in one-out-of-four columns of plane frames with columns of similar size. - (11) At a member end where the moment capacities around the joint satisfy: $\sum M_{Rb} < \sum M_{Rc}$, M_{Rc} is replaced by $M_{Rc}(\sum M_{Rb}/\sum M_{Rc})$. - (12) z is the internal lever arm, taken equal to 0.9d or to the distance between the tension and the compression reinforcement, $d-d_1$. - (13) The axial load, N_{Ed} , and its normalized value, v_d , are taken with their most unfavourable value in the seismic design situation for the shear verification (considering both the demand, V_{Ed} , and the capacity, V_{Rd}). - (14) x is the compression zone depth at the end section in the ULS of bending with axial load.