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FOREWARD 
 
The introduction of Eurocodes is a challenge and opportunity for the European 
cement and concrete industry. These design codes, considered to be the most 
advanced in the world, will lead to a common understanding of the design principles 
for concrete structures for owners, operators and users, design engineers, contractors 
and the manufacturers of concrete products. The advantages of unified codes include 
the preparation of common design aids and software and the establishment of a 
common understanding of research and development needs in Europe. 
 
As with any new design code, it is important to have an understanding of the 
principles and background, as well as design aids to assist in the design process. The 
European cement and concrete industry represented by CEMBUREAU, BIBM and 
ERMCO recognised this need and set up a task group to prepare two documents, 
Commentary to EN 1992 and Worked Examples to EN 1992. The Commentary to EN 
1992 captures te background to the code and Worked Examples to EN 1992 
demonstrates the practical application of the code. Both the documents were prepared 
by a team led by Professor Giuseppe Mancini, Chairman of CEN TC 250/SC2 
Concrete Structures, and peer reviewed by three eminent engineers who played a 
leading role in the development of the concrete Eurocode: Professor Narayanan, 
Professor Spehl and  Professor Walraven.  
 
This is an excellent example of pan-European collaboration and BIBM, 
CEMBUREAU and ERMCO are delighted to make these authoritative documents 
available to design engineers, software developers and all others with an interest in 
promoting excellence in concrete design throughout Europe. As chairman of the Task 
Group, I would like to thank the authors, peer reviewers and members of the joint 
Task Force for working efficiently and effectively in producing these documents. 
 
Dr Pal Chana 
Chairman, CEMBUREAU/BIBM/ERMCO TF 5.5: Eurocodes 



 



Attributable Foreword to the Commentary and Worked Examples to EC2 
 
 
Eurocodes are one of the most advanced suite of structural codes in the world. They 
embody the collective experience and knowledge of whole of Europe. They are born 
out of an ambitious programme initiated by the European Union. With a wealth of 
code writing experience in Europe, it was possible to approach the task in a rational 
and logical manner. Eurocodes reflect the results of research in material technology 
and structural behaviour in the last fifty years and they incorporate all modern trends 
in structural design.  
 
Like many current national codes in Europe, Eurocode 2 (EC 2) for concrete 
structures draws heavily on the CEB Model Code. And yet the presentation and 
terminology, conditioned by the agreed format for Eurocodes, might obscure the 
similarities to many national codes. Also EC 2 in common with other Eurocodes, 
tends to be general in character and this might present difficulty to some designers at 
least initially. The problems of coming to terms with a new set of codes by busy 
practising engineers cannot be underestimated. This is the backdrop to the publication 
of ‘Commentary and Worked Examples to EC 2’ by Professor Mancini and his 
colleagues. Commissioned by CEMBUREAU, BIBM, EFCA and ERMCO this 
publication should prove immensely valuable to designers in discovering the 
background to many of the code requirements. This publication will assist in building 
confidence in the new code, which offers tools for the design of economic and 
innovative concrete structures. The publication brings together many of the 
documents produced by the Project Team during the development of the code. The 
document is rich in theoretical explanations and draws on much recent research. 
Comparisons with the ENV stage of EC2 are also provided in a number of cases. The 
chapter on EN 1990 (Basis of structural design) is an added bonus and will be 
appreciated by practioners. Worked examples further illustrate the application of the 
code and should promote understanding.  
 
The commentary will prove an authentic companion to EC 2 and deserves every 
success. 
 
Professor R S Narayanan 
Chairman CEN/TC 250/SC2 (2002 – 2005) 



Foreword to Commentary to Eurocode 2 and Worked Examples 
 
When a new code is made, or an existing code is updated, a number of principles should 
be regarded: 

1. Codes should be based on clear and scientifically well founded theories, 
consistent and coherent, corresponding to a good representation of the structural 
behaviour and of the material physics. 

2. Codes should be transparent. That means that the writers should be aware, that the 
code is not prepared for those who make it, but for those who will use it. 

3. New developments should be recognized as much as possible, but not at the cost 
of too complex theoretical formulations. 

4. A code should be open-minded, which means that it cannot be based on one 
certain theory, excluding others. Models with different degrees of complexity may 
be offered. 

5. A code should be simple enough to be handled by practicing engineers without 
considerable problems. On the other hand simplicity should not lead to significant 
lack of accuracy. Here the word “accuracy” should be well understood. Often so-
called “accurate” formulations, derived by scientists, cannot lead to very accurate 
results, because the input values can not be estimated with accuracy. 

6. A code may have different levels of sophistication. For instance simple, practical 
rules can be given, leading to conservative and robust designs. As an alternative 
more detailed design rules may be offered, consuming more calculation time, but 
resulting in more accurate and economic results. 

 
For writing a Eurocode, like EC-2, another important condition applies.  International 
consensus had to be reached, but not on the cost of significant concessions with regard to 
quality. A lot of effort was invested to achieve all those goals. 
 
It is a rule for every project, that it should not be considered as finalized if 
implementation has not been taken care of. This book may, further to courses and 
trainings on a national and international level, serve as an essential and valuable 
contribution to this implementation. It contains extensive background information on the 
recommendations and rules found in EC2. It is important that this background 
information is well documented and practically available, as such increasing the 
transparency. I would like to thank my colleagues of  the Project Team, especially Robin 
Whittle, Bo Westerberg, Hugo Corres and Konrad Zilch, for helping in getting together 
all background information. Also my colleague Giuseppe Mancini and his Italian team 
are gratefully acknowledged for providing a set of very illustrative and practical working 
examples. Finally I would like to thank CEMBURAU, BIBM, EFCA and ERMCO for 
their initiative, support and advice to bring out this publication.  
 
 
Joost Walraven 
Convenor of Project Team for EC2 (1998 -2002) 



EC2 – worked examples  summary  
 

Table of Content 

EUROCODE 2  - WORKED EXAMPLES - SUMMARY 

SECTION 2. WORKED EXAMPLES – BASIS OF DESIGN ................................................................. 2-1 

EXAMPLE 2.1. ULS COMBINATIONS OF ACTIONS FOR A CONTINUOUS BEAM  [EC2 – CLAUSE 2.4] ............................... 2-1 

EXAMPLE 2.2. ULS COMBINATIONS OF ACTIONS FOR A CANOPY [EC2 – CLAUSE 2.4] ................................................. 2-2 

EXAMPLE 2.3. ULS COMBINATION OF ACTION OF A RESIDENTIAL CONCRETE FRAMED BUILDING 

 [EC2 – CLAUSE 2.4] ..................................................................................................................................................... 2-4 

EXAMPLE 2.4. ULS COMBINATIONS OF ACTIONS ON A REINFORCED CONCRETE RETAINING WALL  

[EC2 – CLAUSE 2.4] ...................................................................................................................................................... 2-6 

EXAMPLE 2.5. CONCRETE RETAINING WALL: GLOBAL STABILITY AND GROUND RESISTANCE VERIFICATIONS [EC2 – 

CLAUSE 2.4] .................................................................................................................................................................. 2-9 

SECTION 4. WORKED EXAMPLES – DURABILITY .......................................................................... 4-1 

EXAMPLE 4.1 [EC2 CLAUSE 4.4] ............................................................................................................................... 4-1 

EXAMPLE 4.2 [EC2 CLAUSE 4.4] ............................................................................................................................... 4-3 

EXAMPLE 4.3 [EC2 CLAUSE 4.4] ............................................................................................................................... 4-4 

SECTION 6. WORKED EXAMPLES – ULTIMATE LIMIT STATES ................................................ 6-1 

EXAMPLE 6.1 (CONCRETE C30/37) [EC2 CLAUSE 6.1] .............................................................................................. 6-1 

EXAMPLE 6.2 (CONCRETE C90/105) [EC2 CLAUSE 6.1] ............................................................................................ 6-3 

EXAMPLE 6.3 CALCULATION OF  VRD,C FOR A PRESTRESSED BEAM [EC2 CLAUSE 6.2] ................................................ 6-4 

EXAMPLE 6.4 DETERMINATION OF SHEAR RESISTANCE GIVEN THE SECTION GEOMETRY AND MECHANICS  

[EC2 CLAUSE 6.2] ......................................................................................................................................................... 6-5 

EXAMPLE 6.4B – THE SAME ABOVE, WITH STEEL S500C fyd =  435 MPA. [EC2 CLAUSE 6.2] ...................................... 6-7 

EXAMPLE 6.5 [EC2 CLAUSE 6.2] ............................................................................................................................... 6-9 

EXAMPLE 6.6 [EC2 CLAUSE 6.3] ............................................................................................................................. 6-10 

EXAMPLE 6.7 SHEAR – TORSION INTERACTION DIAGRAMS [EC2 CLAUSE 6.3] .......................................................... 6-12 

EXAMPLE 6.8. WALL BEAM [EC2 CLAUSE 6.5] ......................................................................................................... 6-15 



EC2 – worked examples summary 
 

Table of Content 

EXAMPLE 6.9. THICK SHORT CORBEL, a<Z/2 [EC2 CLAUSE 6.5] ............................................................................... 6-18 

EXAMPLE 6.10 THICK CANTILEVER BEAM, A>Z/2 [EC2 CLAUSE 6.5] ........................................................................ 6-21 

EXAMPLE 6.11 GERBER BEAM [EC2 CLAUSE 6.5] .................................................................................................... 6-24 

EXAMPLE 6.12 PILE CAP [EC2 CLAUSE 6.5] ............................................................................................................. 6-28 

EXAMPLE 6.13 VARIABLE HEIGHT BEAM [EC2 CLAUSE 6.5] .................................................................................... 6-32 

EXAMPLE 6.14.  3500 KN CONCENTRATED LOAD  [EC2 CLAUSE 6.5] ........................................................................ 6-38 

EXAMPLE 6.15 SLABS, [EC2 CLAUSE 5.10 – 6.1 – 6.2 –  7.2 – 7.3 – 7.4] ................................................................... 6-40 

SECTION 7. SERVICEABILITY LIMIT STATES – WORKED EXAMPLES ................................... 7-1 

EXAMPLE 7.1 EVALUATION OF SERVICE STRESSES  [EC2 CLAUSE 7.2] ....................................................................... 7-1 

EXAMPLE 7.2 DESIGN OF MINIMUM REINFORCEMENT [EC2 CLAUSE 7.3.2] ............................................................... 7-5 

EXAMPLE 7.3 EVALUATION OF CRACK AMPLITUDE [EC2 CLAUSE 7.3.4] .................................................................... 7-8 

EXAMPLE 7.4. DESIGN FORMULAS DERIVATION FOR THE CRACKING LIMIT STATE   

[EC2 CLAUSE 7.4] ....................................................................................................................................................... 7-10 

5B7.4.2 APPROXIMATED METHOD ............................................................................................................................... 7-11 

EXAMPLE 7.5 APPLICATION OF THE APPROXIMATED METHOD [EC2 CLAUSE 7.4] .................................................... 7-13 

EXAMPLE 7.6 VERIFICATION OF LIMIT STATE OF DEFORMATION ............................................................................. 7-18 

SECTION 11. LIGHTWEIGHT CONCRETE – WORKED EXAMPLES ........................................... 11-1 

EXAMPLE 11.1 [EC2 CLAUSE 11.3.1 – 11.3.2] ......................................................................................................... 11-1 

EXAMPLE 11.2 [EC2 CLAUSE 11.3.1 – 11.3.5 – 11.3.6 – 11.4 – 11.6] ...................................................................... 11-3 

 



EC2 – worked examples  2-1 
 

Table of Content 

SECTION 2. WORKED EXAMPLES – BASIS OF DESIGN 

EXAMPLE 2.1. ULS combinations of actions for a continuous beam  
[EC2 – clause 2.4] 

A continuous beam on four bearings is subjected to the following loads: 
Self-weight    Gk1 
Permanent imposed load  Gk2 
Service imposed load  Qk1 

 
Note. In this example and in the following ones, a single characteristic value is taken for self-weight and 
permanent imposed load, respectively Gk1 and Gk2, because of their small variability. 
 
EQU – Static equilibrium (Set A) 
Factors of Set A should be used in the verification of holding down devices for the uplift of 
bearings at end span, as indicated in Fig. 2.1. 

 
Fig. 2.1. Load combination for verification of holding down devices at the end bearings. 

 
STR – Bending moment verification at mid span (Set B) 
Unlike in the verification of static equilibrium, the partial safety factor for permanent loads in 
the verification of bending moment in the middle of the central span, is the same for all spans: 
γG = 1.35 (Fig. 2.2). 

 

 
Fig. 2.2. Load combination for verification of bending moment in the BC span. 
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EXAMPLE 2.2. ULS combinations of actions for a canopy [EC2 – clause 2.4] 

The canopy is subjected to the following loads: 
Self-weight     Gk1 
Permanent imposed load   Gk2 
Snow imposed load    Qk1 

 
EQU – Static equilibrium (Set A) 
Factors to be taken for the verification of overturning are those of Set A, as in Fig. 2.3. 

 
Fig. 2.3. Load combination for verification of static equilibrium. 

 
STR – Verification of resistance of a column(Set B) 
The partial factor to be taken for permanent loads in the verification of maximum 
compression stresses and of bending with axial force in the column is the same (γG = 1.35) for 
all spans. 

The variable imposed load is distributed over the full length of the canopy in the first case, 
and only on half of it for the verification of bending with axial force. 
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Fig. 2.4. Load combination for the compression stresses verification of the column. 

 

 
Fig. 2.5. Load combination for the verification of bending with axial force of the column. 
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EXAMPLE 2.3. ULS combination of action - residential concrete framed building 
[EC2 – clause 2.4] 

The permanent imposed load is indicated as Gk.Variable actions are listed in table 2.1. 
Table 2.1. Variable actions on a residential concrete building. 

 Variable actions 

 serviceability 
imposed load 

snow on roofing 
(for sites under 1000 m a.s.l.) wind 

Characteristic value Qk Qk,es Qk,n Fk,w 

Combination value ψ0 Qk 0.7 Qk,es 0.5 Qk,n 0.6 Fk,w 
N.B. The values of partial factors are those recommended by EN1990, but they may be defined in the National Annex. 

 
Basic combinations for the verification of the superstructure - STR (Set B) (eq. 6.10-EN1990) 
Predominant action: wind  
favourable vertical loads (fig. 2.6, a) 
1.0·Gk + 1.5·Fk,w  
unfavourable vertical loads (fig. 2.6, b) 
1.35·Gk + 1.5·( Fk,w + 0.5·Qk,n + 0.7·Qk,es) = 1.35·Gk + 1.5· Fk,w + 0.75· Qk,n + 1.05·Qk,es 
Predominant action: snow (fig. 2.6, c)  
1.35·Gk + 1.5·(Qk,n + 0.7·Qk,es + 0.6·Fk,w) = 1.35·Gk + 1.5·Qk,n + 1.05·Qk,es + 0.9·Fk,w  
Predominant action: service load (fig. 2.6, d) 
1.35·Gk + 1.5·( Qk,es + 0.5·Qk,n + 0.6·Fk,w) = 1.35·Gk + 1.5·Qk,es + 0.75·Qk,n + 0.9·Fk,w  
 

  
Fig. 2.6. Basic combinations for the verification of the superstructure (Set B): a) Wind predominant, favourable vertical loads;  

b) Wind predominant, unfavourable vertical loads; c) Snow load predominant; d) service load predominant. 
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Basic combinations for the verification of foundations and ground resistance – STR/GEO 
[eq. 6.10-EN1990] 
 
EN1990 allows for three different approaches; the approach to be used is chosen in the 
National Annex. For completeness and in order to clarify what is indicated in Tables 2.15 and 
2.16, the basic combinations of actions for all the three approaches provided by EN1990 are 
given below. 
 
Approach 1 
The design values of Set C and Set B of geotechnical actions and of all other actions from the 
structure, or on the structure, are applied in separate calculations. Heavier values are usually 
given by Set C for the geotechnical verifications (ground resistance verification), and by Set B 
for the verification of the concrete structural elements of the foundation. 
 
Set C (geotechnical verifications) 
 
Predominant action: wind (favourable vertical loads) (fig. 2.7, a) 
1.0·Gk + 1.3· Fk,w 
Predominant action: wind (unfavourable vertical loads) (fig. 2.7, b) 
1.0·Gk + 1.3· Fk,w + 1.3·0.5·Qk,n + 1.3·0.7·Qk,es = 1.0·Gk + 1.3· Fk,w + 0.65· Qk,n + 0.91·Qk,es 
Predominant action: snow (fig. 2.7, c) 
1.0·Gk + 1.3·Qk,n + 1.3·0.7·Qk,es + 1.3·0.6·Fk,w = 1.0·Gk + 1.3·Qk,n + 0.91·Qk,es + 0.78·Fk,w  
Predominant action: service load (fig. 2.7, d) 
1.0·Gk + 1.3·Qk,es + 1.3·0.5·Qk,n + 1.3·0.6·Fk,w = 1.0·Gk + 1.3·Qk,n + 0.65·Qk,es + 0.78·Fk,w  

 
Fig. 2.7. Basic combinations for the verification of the foundations (Set C): a) Wind predominant, favourable vertical loads;  

b) Wind predominant, unfavourable vertical loads; c) Snow load predominant; d) service load predominant. 
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Set B (verification of concrete structural elements of foundations) 

1.0·Gk + 1.5·Qk,w  

1.35·Gk + 1.5· Fk,w + 0.75·Qk,n + 1.05·Qk,es 

1.35·Gk + 1.5·Qk,n + 1.05·Qk,es + 0.9·Fk,w 

1.35·Gk + 1.5·Qk,es + 0.75·Qk,n + 0.9·Fk,w 
Approach 2 
The same combinations used for the superstructure (i.e. Set B) are used. 
Approach 3 
Factors from Set C for geotechnical actions and from Set B for other actions are used in one 
calculation. This case, as geotechnical actions are not present, can be referred to Set B, i.e. to 
approach 2. 
 

EXAMPLE 2.4. ULS combinations of actions on a reinforced concrete retaining wall 
[EC2 – clause 2.4] 

 
Fig. 2.8. Actions on a retaining wall in reinforced concrete 

 
EQU - (static equilibrium of rigid body: verification of global stability to heave and sliding) (Set A) 
Only that part of the embankment beyond the foundation footing is considered for the 
verification of global stability to heave and sliding (Fig. 2.9). 
 
1.1·Sk,terr + 0.9·(Gk,wall + Gk,terr) + 1.5·Sk,sovr 
 

 
Fig. 2.9. Actions for EQU ULS verification of a retaining wall in reinforced concrete 
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STR/GEO - (ground pressure and verification of resistance of wall and footing) 
Approach 1 
Design values from Set C and from Set B are applied in separate calculations to the 
geotechnical actions and to all other actions from the structure or on the structure. 
 
Set C 

1.0·Sk,terr + 1.0·Gk,wall + 1.0·Gk,terr + 1.3·Sk,sovr 
Set B 

1.35·Sk,terr + 1.0·Gk,wall + 1.0·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 

1.35·Sk,terr + 1.35·Gk,wall + 1.35·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 

1.35·Sk,terr + 1.0·Gk,wall + 1.35·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 

1.35·Sk,terr + 1.35·Gk,wall + 1.0·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 
 
Note: For all the above-listed combinations, two possibilities must be considered: either that 
the surcharge concerns only the part of embankment beyond the foundation footing 
(Fig. 2.10a), or that it acts on the whole surface of the embankment (Fig. 2.10b). 
 

 
Fig. 2.10. Possible load cases of surcharge on the embankment. 

 
For brevity, only cases in relation with case b), i.e. with surcharge acting on the whole surface 
of embankment, are given below. 

The following figures show loads in relation to the combinations obtained with Set B partial 
safety factors. 



EC2 – worked examples 2-8 
 

Table of Content 

 
Fig. 2.11. Actions for GEO/STR ULS verification of a retaining wall in reinforced concrete. 
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Approach 2 
Set B is used. 
 
Approach 3 
Factors from Set C for geotechnical actions and from Set B for other actions are used in one 
calculation. 
1.0·Sk,terr + 1.0·Gk,wall + 1.0·Gk,terr + 1.3·Qk,sovr + 1.3·Sk,sovr 

1.0·Sk,terr + 1.35·Gk,wall + 1.35·Gk,terr + 1.3·Qk,sovr + 1.3·Sk,sovr 

1.0·Sk,terr + 1.0·Gk,wall + 1.35·Gk,terr + 1.3·Qk,sovr + 1.3·Sk,sovr 

1.0·Sk,terr + 1.35·Gk,wall + 1.0·Gk,terr + 1.3·Qk,sovr + 1.3·Sk,sovr 
 
A numeric example is given below. 
 

EXAMPLE 2.5. Concrete retaining wall: global stability and ground resistance 
verifications [EC2 – clause 2.4] 

The assumption is initially made that the surcharge acts only on the part of embankment 
beyond the foundation footing. 

 
Fig. 2.12.Wall dimensions and actions on the wall (surcharge outside the foundation footing). 

 
weight density:     γ=18 kN/m3 
angle of shearing resistance:  φ=30° 
factor of horiz. active earth pressure: Ka = 0.33 
wall-ground interface friction angle: δ=0° 
self-weight of wall:   Pk,wall = 0.30 ⋅ 2.50 ⋅ 25 = 18.75 kN/m 
self-weight of footing:   Pk,foot = 0.50 ⋅ 2.50 ⋅ 25 = 31.25 kN/m 

Gk,wall = Pk,wall + Pk,foot = 18.75 + 31.25 = 50 kN/m 
self weight of ground above footing:  Gk,ground = 18 ⋅ 2.50 ⋅ 1.70 = 76.5 kN/m 
surcharge on embankment:  Qk,surch =10 kN/m2 
ground horizontal force:   Sk,ground = 26.73 kN/m 
surcharge horizontal force:   Sk,surch = 9.9 kN/m 
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Verification to failure by sliding 
 
Slide force 
Ground horizontal force (γG=1,1): Sground = 1.1 ⋅ 26.73= 29.40 kN/m 
Surcharge horizontal (γQ=1.5): Ssur = 1.5 ⋅ 9.90 = 14.85 kN/m 
Sliding force: Fslide = 29.40 + 14.85 = 44.25 kN/m 
 
Resistant force 
(in the assumption of ground-flooring friction factor = 0.57) 
wall self-weight (γG=0.9): Fstab,wall = 0.9⋅(0.57⋅18.75) = 9.62 kN/m 
footing self-weight (γG=0.9): Fstab,foot = 0.9⋅(0.57⋅31.25) = 16.03 kNm/m 
ground self-weight (γG=0.9): Fstab,ground = 0.9⋅(0.57⋅76.5) = 39.24 kN/m 
resistant force: Fstab = 9.62 + 16.03 + 39.24 = 64.89 kN/m 
The safety factor for sliding is: 
FS = Fstab / Frib = 64.89 / 44.25 = 1.466 
 
Verification to Overturning 
 
overturning moment 
moment from ground lateral force (γG=1.1): MS,ground = 1.1⋅(26.73⋅3.00/3) = 29.40 kNm/m 
moment from surcharge lateral force (γQ=1.5): MS,surch = 1.5 ⋅ (9.90 ⋅ 1.50) = 22.28 kNm/m 
overturning moment: Mrib = 29.40 + 22.28 = 51.68 kNm/m 
 
stabilizing moment 
moment wall self-weight (γG=0.9): Mstab,wall = 0.9⋅(18.75⋅0.65) = 10.97 kNm/m 
moment footing self-weight (γG=0.9): Mstab,foot = 0.9⋅(31.25⋅1.25) = 35.16 kNm/m 
moment ground self-weight (γG=0.9): Mstab,ground = 0.9⋅(76.5⋅1.65) = 113.60 kNm/m 
stabilizing moment: Mstab = 10.97 + 35.16 + 113.60 = 159.73 kNm/m 
 
safety factor to global stability 
FS = Mstab/Mrib = 159.73/51.68 = 3.09 
 
Contact pressure on ground 
Approach 2, i.e. Set B if partial factors, is used. 
 

By taking 1.0 and 1.35 as the partial factors for the self-weight of the wall and of the ground 
above the foundation footing respectively, we obtain four different combinations as seen 
above: 

first combination 

1.35·Sk,terr + 1.0·Gk,wall + 1.0·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 
second combination 

1.35·Sk,terr + 1.35·Gk,wall + 1.35·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 
third combination 

1.35·Sk,terr + 1.0·Gk,wall + 1.35·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 
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fourth combination 

1.35·Sk,terr + 1.35·Gk,wall + 1.0·Gk,terr + 1.5·Qk,sovr + 1.5·Sk,sovr 
 
the contact pressure on ground is calculated, for the first of the fourth above-mentioned 
combinations, as follows: 
moment vs. centre of mass of the footing 
moment from ground lateral force (γG=1.35): MS,terr = 1.35⋅(26.73⋅3.00/3)=36.08 kNm/m 
moment from surcharge lateral force (γQ=1.5):  MS,sovr = 1.5⋅(9.90⋅1.50) = 22.28 kNm/m 
moment from wall self-weight (γG=1.0): Mwall = 1.0⋅(18.75 ⋅ 0.60) = 11.25 kNm/m 
moment from footing self-weight (γG=1.0): Mfoot = 0 kNm/m 
moment from ground self-weight (γG=1.0): Mground = - 1.0⋅(76.5⋅0.40) = - 30.6 kNm/m 
 
Total moment Mtot = 36.08 + 22.28 + 11.25 – 30.6 = 39.01 kNm/m 
 
Vertical load 
Wall self-weight (γG=1.0): Pwall = 1.0 ⋅ (18.75) = 18.75 kNm/m 
Footing self-weight (γG=1.0): Pfoot = 1.0 ⋅ (31.25) =31.25 kNm/m 
Ground self-weight (γG=1.0): Pground = 1.0 ⋅ (76.5) = 76.5 kNm/m 
Total load Ptot = 18.75 + 31.25 + 76.5 = 126.5 kN/m 
Eccentricity e = Mtot / Ptot = 39.01 / 126.5 = 0.31 m ≤ B/6 = 2.50/6 = 41.67 cm 
Max pressure on ground σ = Ptot / 2.50 + Mtot ⋅ 6 / 2.502 = 88.05 kN/m2 = 0.088 MPa 

 
The results given at Table 2.2 are obtained by repeating the calculation for the three remaining 
combinations of partial factors. 
The maximal pressure on ground is achieved with the second combination, i.e. for the one in 
which the wall self-weight and the self-weight of the ground above the footing are both multiplied by 
1.35. 
For the verification of the contact pressure, the possibility that the surcharge acts on the whole 
embankment surface must be also considered. (Fig. 2.13); the values given at Table 2.3 are 
obtained by repeating the calculation for this situation. 

 
Fig. 2.13. Dimensions of the retaining wall of the numeric example with surcharge on the whole embankment. 
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Table 2.2. Max pressure for four different combinations of partial factors of permanent loads  
(surcharge outside the foundation footing). 

Combination first second third fourth 
MS,ground  

(kNm/m) 
36.08 

(γQ=1.35) 
36.08

(γQ=1.35) 
36.08

(γQ=1.35) 
36.08 

(γQ=1.35) 
MS,surch 

(kNm/m) 
22.28 

(γQ=1.5) 
22.28

(γQ=1.5) 
22.28

(γQ=1.5) 
22.28 

(γQ=1.5) 
Mwall 

(kNm/m) 
11.25 

(γG=1.0) 
15.19

(γG=1.35) 
11.25

(γG=1.0) 
15.19 

(γG=1.35) 
Mground 

(kNm/m) 
-30.60 

(γG=1.0) 
-41.31

(γG=1.35) 
-41.31

(γG=1.35) 
-30.60 

(γG=1.0) 
Mtot 

(kNm/m) 39.01 32.24 28.30 42.95 

Pwall 
(kN/m) 

18.75 
(γG=1.0) 

25.31
(γG=1.35) 

18.75
(γG=1.0) 

25.31 
 (γG=1.35) 

Pfoot 
(kN/m) 

31.25 
(γG=1.0) 

42.19
(γG=1.35) 

31.25
(γG=1.0) 

42.19 
 (γG=1.35) 

Pground 
(kN/m) 

76.50 
(γG=1.0) 

103.28
(γG=1.35) 

103.28
(γG=1.35) 

76.50 
(γG=1.0) 

Ptot 
(kN/m) 126.50 170.78 153.28 144 

eccentricity (m) 0.31 0.19 0.18 0.30 
pressure on ground (kN/m2) 88.05 99.26 88.48 98.83 

 
Table 2.3. Max pressure on ground for four different combinations of partial factors of permanent loads  

(surcharge on the whole foundation footing). 
Combination first second third fourth 

MS,ground  
(kNm/m) 

36.08 
(γQ=1.35) 

36.08
(γQ=1.35) 

36.08
(γQ=1.35) 

36.08 
(γQ=1.35) 

MS,surch 
(kNm/m) 

22.28 
(γQ=1.5) 

22.28
(γQ=1.5) 

22.28
(γQ=1.5) 

22.28 
(γQ=1.5) 

Mwall 
(kNm/m) 

11.25 
(γG=1.0) 

15.19
(γG=1.35) 

11.25
(γG=1.0) 

15.19 
(γG=1.35) 

Mground 
(kNm/m) 

-30.60 
(γG=1.0) 

-41.31
(γG=1.35) 

-41.31
(γG=1.35) 

-30.60 
(γG=1.0) 

Msurch 

(kNm/m) 
-10.20 

(γQ=1.5) 
-10.20

(γQ=1. 5) 
-10.20

(γQ=1. 5) 
-10.20 

(γQ=1.5) 
Mtot 

(kNm/m) 28.81 22.04 18.10 32.75 

Pwall 
(kN/m) 

18.75 
(γG=1.0) 

25.31
(γG=1.35) 

18.75
(γG=1.0) 

25.31 
 (γG=1.35) 

Pfoot 
(kN/m) 

31.25 
(γG=1.0) 

42.19
(γG=1.35) 

31.25
(γG=1.0) 

42.19 
 (γG=1.35) 

Pterr 
(kN/m) 

76.50 
(γG=1.0) 

103.28
(γG=1.35) 

103.28
(γG=1.35) 

76.50 
(γG=1.0) 

Psurch 

(kN/m) 
25.50 

(γQ=1.5) 
25.50

(γQ=1.5) 
25.50

(γQ=1. 5) 
25.50 

(γQ=1.5) 
Ptot 

(kN/m) 152.0 196.28 178.78 169.50 

eccentricity (m) 0.19 0.11 0.10 0.19 
pressure on ground (kN/m2) 88.46 99.67 88.89 99.24 

The two additional lines, not present in Table 1.18 and here highlighted in bold, correspond to the moment and to the vertical 
load resulting from the surcharge above the footing. 

The max pressure on ground is achieved once again for the second combination and its value 
is here higher than the one calculated in the previous scheme.
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SECTION 4. WORKED EXAMPLES – DURABILITY 

EXAMPLE 4.1 [EC2 clause 4.4]  

Design the concrete cover of a reinforced concrete beam with exposure class XC1. 
 
The concrete in use has resistance class C25/30. 
Bottom longitudinal bars are 5φ 20; the stirrups are φ 8 at 100 mm. 
 
The max aggregate size is: dg = 20 mm (< 32 mm). 
The design working life of the structure is 50 years. 
Normal quality control is put in place. 
Refer to figure 4.1. 

  
Fig. 4.1 

 
From table E.1N - EC2 we see that, in order to obtain an adequate concrete durability, the 
reference (min.) concrete strength class for exposure class XC1 is C20/25; the resistance 
class adopted (C25/30) is suitable as it is higher than the reference strength class. 
 
The structural class is S4. 
First, the concrete cover for the stirrups is calculated. 
 
With: 
cmin,b = 8 mm  
 
We obtain from table 4.4N - EC2: 
cmin,dur = 15 mm  
 
Moreover: 
Δcdur,γ = 0 ; 
Δcdur,st = 0 ; 
Δcdur,add = 0 . 
 
From relation (3.2): 
cmin = max (cmin,b; cmin,dur + Δcdur,γ - Δcdur,st - Δcdur,add; 10 mm) = 
  max (8; 15 + 0 – 0 – 0; 10 mm) = 15 mm  
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Moreover:  
devΔc  = 10 mm. 

 
We obtain from relation (3.1): 

nom min devc c Δc= +  = 15 + 10 = 25 mm . 
 
If we now calculate now the concrete cover for longitudinal reinforcement bars, 
 
we have: 

min,bc  = 20 mm. 
 
We obtain from table 4.4N - EC2: 

min,durc  = 15 mm . 
 
Moreover: 

γΔ dur ,c  = 0 ; 

dur,stΔc  = 0 ; 

dur,addΔc  = 0 . 
 
From relation (3.2): 

minc  = max (20; 15 + 0 – 0 – 0; 10 mm) = 20 mm . 
 
Moreover: devΔc  = 10 mm. 
 
We obtain from relation (3.1): 

nomc  = 20 + 10 = 30 mm . 
 
The concrete cover for the stirrups is “dominant”. In this case, the concrete cover for 
longitudinal bars is increased to: 25 + 8 = 33 mm . 
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EXAMPLE 4.2 [EC2 clause 4.4] 

Design the concrete cover for a reinforced concrete beam placed outside a residential 
building situated close to the coast. 
The exposure class is XS1.  
We originally assume concrete with strength class C25/30. 
The longitudinal reinforcement bars are 5φ 20; the stirrups are φ 8 at 100 mm .  
The maximal aggregate size is: dg = 20 mm (< 32 mm). 
The design working life of the structure is 50 years. 
A normal quality control is put in place. 
Refer to figure 3.2. 
 
From table E.1N - EC2 we find that, in order to obtain an adequate concrete durability, the 
reference (min.) concrete strength class for exposure class XS1 is C30/37; the concrete 
strength class must therefore be increased from the originally assumed C25/30 to C30/37, 
even if the actions on concrete were compatible with strength class C25/30. 

 
Fig. 4.2 

 
In accordance with what has been stated in example 3.1, we design the minimum concrete 
cover with reference to both the stirrups and the longitudinal bars. 
The structural class is S4 
 
We obtain ( min,durc  = 35 mm ; devΔc  = 10 mm): 
- for the stirrups: nomc  = 45 mm ; 
- for the longitudinal bars: nomc  = 45 mm . 
 
The concrete cover for the stirrups is “dominant”. In this case, the concrete cover for 
longitudinal bars is increased to: 45 + 8 = 53 mm . 
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EXAMPLE 4.3 [EC2 clause 4.4] 

Calculate the concrete cover of a TT precast element, made of prestressed reinforced concrete, 
placed outside an industrial building situated close to the coast. 
 
The exposure class is XS1.  
We use concrete with strength class C45/55.  
At the lower side of the two ribbings of the TT element we have: 
− longitudinal φ 12 reinforcement bars; 
− φ 8 stirrups at 100 mm ; 
− strands φ  0,5” . 
The maximal aggregate size is: dg = 16 mm. 
The design working life of the structure is 50 years. 
An accurate quality control of concrete production is put in place. 
Refer to figure 3.3. 
 
We find out from table E.1N - EC2 that for exposure class XS1, the minimum concrete 
strength class is C30/37; strength class C45/55 is therefore adequate. 
 
The original structural class is S4. 
In accordance with table 4.3N: 
− the structural class is reduced by 1 as the concrete used (C45/55) is of strength class 

higher than C40/50; 
− the structural class is reduced by 1 as special quality control of the concrete production 

is ensured 
 
We then refer to structural class S2. 
  
Calculating first the concrete cover for stirrups. 
 
We have: 

min,bc  = 8 mm . 
 
We obtain from table 4.4N - EC2: 

min,durc  = 25 mm . 
 
Moreover: 

γΔ dur ,c  = 0 ; 

dur,stΔc  = 0 ; 

dur,addΔc  = 0 . 
 
From relation (3.2): 

γ= + Δ − Δ − Δmin min,b min,dur dur , dur ,st dur ,addc max (c ; c c c c ; 10 mm)  = 
= max (8; 25 + 0 – 0 – 0; 10 mm) = 25 mm . 
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Considering that the TT element is cast under procedures subjected to a highly efficient 
quality control, in which the concrete cover length is also assessed, the value of Δcdev can 
be taken as 5 mm. 
 
We obtain from relation (3.1): 

nom min devc c Δc= +  = 25 + 5 = 30 mm . 
 
Calculating now the concrete cover for longitudinal bars. 
 
We have: 

min,bc  = 12 mm . 
 
We obtain from table 4.4N - EC2: 

min,durc  = 25 mm . 
 
Moreover: 

γΔ dur ,c  = 0 ; 

dur,stΔc  = 0 ; 

dur,addΔc  = 0 . 
 
From relation (3.2): 

γ= + Δ − Δ − Δmin min,b min,dur dur , dur ,st dur ,addc max (c ; c c c c ; 10 mm)  = 
= max (12; 25 + 0 – 0 – 0; 10 mm) = 25 mm . 
 
We obtain from relation (3.1): 

nom min devc c Δc= +  = 25 + 5 = 30 mm . 
 
Note that for the ordinary reinforcement bars, the concrete cover for stirrups is “dominant”. 
In this case, the concrete cover for longitudinal bars is increased to: 30 + 8 = 38 mm . 

 

 
Fig. 4.3 

 
Calculating now the concrete cover for strands. 
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We have: 
min,bc  = 1,5 · 12,5  = 18,8 mm . 

 
We obtain from table 4.5N - EC2: 

min,durc  = 35 mm . 
 
Moreover: 

γΔ dur ,c  = 0 ; 

dur,stΔc  = 0 ; 

dur,addΔc  = 0 . 
 
From relation (3.2): 

minc  = max (18,8; 35 + 0 – 0 – 0; 10 mm) = 35 mm . 
 
Moreover: 

devΔc  = 5 mm . 
 
From relation (3.1): 

nomc  = 35 + 5 = 40 mm . 
 
The first strand’s axis is placed at 50mm from the lower end of the ribbing of the TT 
element.  The concrete cover for the lower strands of the TT element (one for each ribbing) 
is therefore equal to 43mm. 
 



EC2 – worked examples 6-1 

6-1 

SECTION 6. WORKED EXAMPLES – ULTIMATE LIMIT STATES 

GENERAL NOTE: Eurocode 2 permits to use a various steel yielding grades ranging 
from 400 MPa to 600 MPa. In particular the examples are developed using S450 steel with 
ductility grade C, which is used in southern Europe and generally in seismic areas. Some 
example is developed using S500 too.  

EXAMPLE 6.1 (Concrete C30/37) [EC2 clause 6.1] 

Geometrical data: b= 500 mm; h = 1000 mm; d' = 50 mm; d = 950 mm.  
Steel and concrete resistance, β1  and β2 factors and x1, x2  values are shown in table 6.1. 
 
Basis: β1 means the ratio between the area of the parabola – rectangle diagram at certain 
deformation εc and the area of  rectangle at the same deformation. 
β2 is the “position factor”, the ratio between the distance of the resultant of parabola – 
rectangle diagram at certain deformation εc from εc and the deformation εc itself. 

   
Fig. 6.1 Geometrical data and Possible strain distributions at the ultimate limit states  

Table 6.1 Material data,  β1 and β2 factors and neutral axis depth. 

Example fyk 
(MPa) 

fyd 
(MPa) 

fck 
(MPa) 

fcd 
(MPa) 

β1 β2 
x1 

(mm) 
x2 

(mm) 
6.1 450 391 30 17 0.80 0.40 113,5 608,0 
6.2 450 391 90 51 0.56 0.35 203.0 541.5 

First the NRd values corresponding to the 4 configurations of the plane section are 
calculated. 

NRd1 = 0.8·500·113.5·17·10-3 = 772 kN 

NRd2 = 0.8·500·608.0·17·10-3 = 4134 kN.  

 The maximum moment resistance MRd,max = 2821.2 kNm goes alongside it. 

NRd3 = 0.8·500·950·17·10-3 + 5000·391·10-3 = 6460 + 1955 = 8415 kN 

NRd4 = 0.8·500·1000·17·10-3 + 5000·391·10-3 = 8500 + 3910 = 12410 kN 
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MRd3 must also be known. This results: MRd3 = 6460·(500 – 0,4·950) ·10-3 = 1655 kNm 

Subsequently, for a chosen value of NEd in each interval between two following values of 
NRd written above and one smaller than NRd1, the neutral axis x, MRd, and the eccentricity  

e = 
Rd

Ed

M
N  are calculated. Their values are shown in Table 6.2. 

Table 6.2. Example 1: values of axial force, depth of neutral axis, moment resistance, eccentricity. 

NEd (kN) X (m) MRd (kNm) e (m) 
600 0,105 2031 3.38 

2000 0,294 2524 1.26 
5000 0,666 2606 0.52 
10000 virtual neutral axis 1000 0.10 

 
As an example the calculation related to  NEd  = 5000 kN is shown. 

The equation of equilibrium to shifting for determination of  x is written: 

− ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠
2 5000000 5000 391 5000 0.0035 200000 5000 0.0035 200000 5000 950x x 0

0.80 500 17 0.80 500 17
Developing, it results: 

x2 + 66.91x – 488970 = 0 

which is satisfied for x = 666 mm 

The stress in the lower reinforcement is: ⎛ ⎞σ = ⋅ ⋅ − =⎜ ⎟
⎝ ⎠

2
s

9500.0035 200000 1 297N/ mm
666

 

The moment resistance is: 

MRd = 5000·391·(500-50) + 5000·297·(500-50) + 0.80·666·500·17·(500 – 0.40 666) =  

 2606·106 Nmm = 2606 kNm 

and the eccentricity = =
2606e 0,52m
5000
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EXAMPLE 6.2 (Concrete C90/105) [EC2 clause 6.1] 

For geometrical and mechanical data refer to example 6.1. 

 

Values of NRd  corresponding to the 4 configurations of the plane section and of MRd3: 

NRd1 = 2899 kN 

NRd2 = 7732 kN.  MRd,max = 6948.7 kNm is associated to it. 

NRd3 = 13566 + 3910 = 17476 kN 

NRd4 = 14280 + 7820 = 22100 kN 

MRd3 = 13566 (0.5 – 0.35·0.619) + 3910·(0.50- 0.05) = 4031 kNm 

Applying the explained procedure x, MRd and the eccentricity e were calculated for the 
chosen values of NEd .  

The results are shown in Table 6.3 
 

Table 6.3 Values of axial load, depth of neutral axis, moment resistance, eccentricity 

NEd 
(kN) 

x 
(m) 

MRd 
(kNm) 

e 
(m) 

1500 0,142 4194 2.80 
5000 0,350 5403 1.08 

10000 0,619 5514 0.55 
19000 virtual neutral axis 2702 0.14 
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EXAMPLE 6.3 Calculation of  VRd,c for a prestressed beam [EC2 clause 6.2] 

Rectangular section bw = 100 mm, h = 200 mm, d = 175 mm. No longitudinal or transverse 
reinforcement bars are present.  Class C40 concrete.  Average prestressing  σcp = 5,0 MPa. 

 

Design tensile resistance in accordance with: 

fctd = αct fctk, 0,05/γC = 1· 2,5/1,5= 1,66 MPa  

Cracked sections subjected to bending moment. 

VRd,c = (νmin + k1 σcp) bwd                                                                                               

where νmin = 0,626 and k1 = 0,15. It results: 

VRd,c = (0.626 + 0.15⋅5.0)⋅100⋅175 = 24.08 kN 

Non-cracked sections subjected to bending moment. With αI = 1 it results 

I = ⋅ = ⋅
3

6 4200100 66.66 10 mm
12

 

S = ⋅ ⋅ = ⋅ 3 3100 100 50 500 10 mm  

VRd,c = ( )⋅ ⋅
+ ⋅ =

⋅

6
2

3

100 66.66 10 1.66 1,66 5.0 44.33 kN
500 10
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EXAMPLE 6.4 Determination of shear resistance given the section geometry and 
mechanics [EC2 clause 6.2] 

Rectangular or T-shaped beam, with  

bw = 150 mm,  

h = 600 mm,   

d = 550 mm,  

z = 500 mm;  

vertical stirrups diameter 12 mm, 2 legs (Asw = 226 mm2), s = 150 mm, fyd = 391 MPa.    

The example is developed for three classes of concrete. 

a)  fck  = 30 MPa ; fcd = 17 MPa ; ν = 0.616 

= θ
ν

sw ywd 2

w cd

A f
sin

b s f
        obtained from VRd,s = VRd,max                                                      

it results: ⋅
θ = =

⋅ ⋅ ⋅
2 226 391sin 0.375

150 150 0.616 17
    hence cotθ = 1,29 

Then −= ⋅ ⋅ ⋅ θ = ⋅ ⋅ ⋅ ⋅ =3sw
Rd,s ywd

A 226V z f cot 500 391 1.29 10 380 kN
s 150

 

b) For the same section and reinforcement, with fck = 60 MPa, fcd = 34 MPa;  
ν = 0.532, proceeding as above it results: 

⋅
θ = =

⋅ ⋅ ⋅
2 226 391sin 0.2171

150 150 0.532 34
    hence cotθ = 1,90  

−= ⋅ ⋅ ⋅ θ = ⋅ ⋅ ⋅ ⋅ =3sw
Rd,s ywd

A 226V z f cot 500 391 1.90 10 560 kN
s 150

  

c)  For the same section and reinforcement, with fck = 90 MPa, fcd = 51 MPa; ν = 0.512, 
proceeding as above it results: 

⋅
θ = =

⋅ ⋅ ⋅
2 226 391sin 0.1504

150 150 0.512 51
 hence cotθ = 2.38 

−= ⋅ ⋅ ⋅ θ = ⋅ ⋅ ⋅ ⋅ =3sw
Rd,s ywd

A 226V z f cot 500 391 2.38 10 701 kN
s 150
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Determination of reinforcement (vertical stirrups) given the beam and shear action VEd 

Rectangular beam bw = 200 mm, h = 800 mm,  d = 750 mm, z = 675 mm; vertical stirrups 
fywd = 391 MPa. Three cases are shown, with varying values of  VEd and of fck. 

•VEd = 600 kN; fck = 30 MPa ; fcd = 17 MPa ; ν = 0.616 

Then ⋅
θ = = =

α ν ⋅ ⋅ ⋅ ⋅
oEd

cw cd w

2V1 1 2 600000arcsin arcsin 29.0
2 ( f )b z 2 (1 0.616 17) 200 675

 

hence cotθ = 1.80 

It results: = = =
⋅ ⋅ θ ⋅ ⋅

2sw Ed

ywd

A V 600000 1.263 mm / mm
s z f cot 675 391 1.80

 

which is satisfied with 2-leg stirrups φ12/170 mm. 

The tensile force in the tensioned longitudinal reinforcement necessary for bending 
must be increased by ΔFtd = 0.5 VEd cot θ = 0.5·600000·1.80 = 540 kN 

•VEd = 900 kN; fck = 60 MPa ; fcd = 34 MPa ; ν = 0.532 

⋅
θ = = =

α ν ⋅ ⋅ ⋅ ⋅
oEd

cw cd w

2V1 1 2 900000arcsin arcsin 23.74
2 ( f )b z 2 (1 0.532 34) 200 675

 

hence cotθ = 2.27 

Then with it results = = =
⋅ ⋅ θ ⋅ ⋅

2sw Ed

ywd

A V 900000 1.50 mm / mm
s z f cot 675 391 2.27

 

which is satisfied with 2-leg stirrups φ12/150 mm. 

The tensile force in the tensioned longitudinal reinforcement necessary for bending 
must be increased by ΔFtd = 0.5 VEd cot θ = 0.5·900000·2.27= 1021 kN 

• VEd = 1200 kN; fck = 90 MPa ; fcd = 51 MPa ; ν = 0.512 

⋅
θ = = =

α ν ⋅ ⋅ ⋅
oEd

cw cd w

2V1 1 2 1200000arcsin arcsin 21.45
2 ( f )b z 2 0.512 51 200 675

 

As θ is smaller than 21.8o , cotθ = 2.50 

Hence  = = =
⋅ ⋅ θ ⋅ ⋅

2sw Ed

ywd

A V 1200000 1.82 mm / mm
s z f cot 675 391 2.50

 

which is satisfied with 2-leg stirrups φ12/120 mm. 

The tensile force in the tensioned longitudinal reinforcement necessary for bending 
must be increased by ΔFtd = 0.5 VEd cot θ = 0.5·1200000·2.50 = 1500 kN 
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EXAMPLE 6.4b – the same above, with steel S500C fyd =  435 MPa. [EC2 clause 6.2] 

The example is developed for three classes of concrete. 

a)  fck  = 30 MPa ; fcd = 17 MPa ; ν = 0.616 

= θ
ν

sw ywd 2

w cd

A f
sin

b s f         obtained for VRd,s = VRd,max                                                      

it results: ⋅
θ = =

⋅ ⋅ ⋅
2 226 435sin 0.417

150 150 0.616 17
    hence cotθ = 1.18 

Then −= ⋅ ⋅ ⋅ θ = ⋅ ⋅ ⋅ ⋅ =3sw
Rd,s ywd

A 226V z f cot 500 435 1.18 10 387 kN
s 150

 

b) For the same section and reinforcement, with fck = 60 MPa , fcd = 34 MPa;  
ν = 0.532, proceeding as above it results: 

⋅
θ = =

⋅ ⋅ ⋅
2 226 435sin 0.242

150 150 0.532 34
    hence cotθ = 1.77  

−= ⋅ ⋅ ⋅ θ = ⋅ ⋅ ⋅ ⋅ =3sw
Rd,s ywd

A 226V z f cot 500 435 1.77 10 580 kN
s 150

  

c)  For the same section and reinforcement, with fck = 90 MPa, fcd = 51 MPa; ν = 0.512, 
proceeding as above it results: 

⋅
θ = =

⋅ ⋅ ⋅
2 226 435sin 0.167

150 150 0.512 51
    hence cotθ = 2.23 

−= ⋅ ⋅ ⋅ θ = ⋅ ⋅ ⋅ ⋅ =3sw
Rd,s ywd

A 226V z f cot 500 435 2.23 10 731 kN
s 150

 

Determination of reinforcement (vertical stirrups) given the beam and shear action VEd 

Rectangular beam bw = 200 mm, h = 800 mm,  d = 750 mm, z = 675 mm; vertical stirrups 
fywd = 391 MPa. Three cases are shown, with varying values of  VEd and of fck. 

•VEd = 600 kN; fck = 30 MPa ; fcd = 17 MPa ; ν = 0.616 then 

⋅
θ = = =

α ν ⋅ ⋅ ⋅ ⋅
oEd

cw cd w

2V1 1 2 600000arcsin arcsin 29.0
2 ( f )b z 2 (1 0.616 17) 200 675

  hence cotθ = 1.80 

It results: = = =
⋅ ⋅ θ ⋅ ⋅

2sw Ed

ywd

A V 600000 1.135 mm / mm
s z f cot 675 435 1.80

 

which is satisfied with 2-leg stirrups φ12/190 mm. 

The tensile force in the tensioned longitudinal reinforcement necessary for bending must 
be increased by ΔFtd = 0.5 VEd cot θ = 0.5·600000·1.80 = 540 kN 
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• VEd = 900 kN; fck = 60 MPa ; fcd = 34 MPa ; ν = 0.532 

⋅
θ = = =

α ν ⋅ ⋅ ⋅ ⋅
oEd

cw cd w

2V1 1 2 900000arcsin arcsin 23.74
2 ( f )b z 2 (1 0.532 34) 200 675

 hence cotθ = 2.27 

Then with it results = = =
⋅ ⋅ θ ⋅ ⋅

2sw Ed

ywd

A V 900000 1.35 mm / mm
s z f cot 675 435 2.27

 

which is satisfied with 2-leg stirrups φ12/160 mm. 

The tensile force in the tensioned longitudinal reinforcement necessary for bending 
must be increased by ΔFtd = 0.5 VEd cot θ = 0.5·900000·2.27 = 1021 kN 

• VEd = 1200 kN; fck = 90 MPa ; fcd = 51 MPa ; ν = 0.512 

⋅
θ = = =

α ν ⋅ ⋅ ⋅
oEd

cw cd w

2V1 1 2 1200000arcsin arcsin 21.45
2 ( f )b z 2 0.512 51 200 675

 

As θ is smaller than 21.8o , cotθ = 2.50 

Hence  = = =
⋅ ⋅ θ ⋅ ⋅

2sw Ed

ywd

A V 1200000 1.63 mm / mm
s z f cot 675 435 2.50

 

which is satisfied with 2-leg stirrups φ12/130 mm. 

The tensile force in the tensioned longitudinal reinforcement necessary for bending 
must be increased by ΔFtd = 0.5 VEd cot θ = 0.5·1200000·2.50 = 1500 kN 
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EXAMPLE 6.5 [EC2 clause 6.2] 

Rectangular or T-shaped beam, with  

bw = 150 mm 

h = 800 mm  

d = 750 mm  

z = 675 mm;  

fck = 30 MPa ; fcd = 17 MPa ; ν = 0.616 

Reinforcement:  

inclined stirrups 45o (cotα = 1,0) , diameter 10 mm, 2 legs (Asw = 157 mm2), s = 150 mm, 
fyd = 391 MPa. 

 

Calculation of shear resistance 

•Ductility is first verified by   
α ν

≤ ⋅
α

sw ,max ywd cw 1 cd

w

A f f
0.5

b s sin
 

 And replacing  ⋅ ⋅ ⋅
≤ ⋅

⋅
157 391 1 0.616 170.5
150 150 0.707

  = 2.72 < 7.40 

•The angle θ of simultaneous concrete – reinforcement steel collapse 

It results 
ν

θ = −
α

cd

sw ywd

bs f
cot 1

A f sin
     

and, replacing ⋅ ⋅ ⋅
θ = − =

⋅ ⋅
150 150 0.616 17cot 1 2.10

157 391 0.707
 

 c)     Calculation of VRd 

It results: −= ⋅ ⋅ ⋅ + ⋅ ⋅ =3
Rd,s

157V 675 391 (2.10 1.0) 0.707 10 605.4 kN
150

 

•Increase of tensile force the longitudinal bar (VEd =VRd,s) 

ΔFtd = 0.5 VRd,s (cot θ − cot α) = 0.5·605.4· (2.10 -1.0) = 333 kN 

 



EC2 – worked examples  6-10 

Table of Content 

EXAMPLE 6.6 [EC2 clause 6.3] 

Ring rectangular section, Fig. 6.2, with depth 1500 mm, width 1000 mm, d = 1450 mm, 
with  200 mm wide vertical members and 150 mm wide horizontal members. 
Materials:  

fck  = 30 MPa  

fyk = 500 MPa  

Results of actions:  

VEd = 1300 kN  (force parallel to the larger side) 

TEd = 700 kNm 

Design resistances:  

fcd =0.85·(30/1.5) = 17.0 MPa   

ν = 0.7[1-30/250] = 0.616 

ν fcd = 10.5 MPa 

fyd = 500/1.15 = 435 MPa 

Geometric elements:  

uk = 2(1500-150) + 2(1000-200) = 4300 mm 

Ak = 1350 · 800 = 1080000 mm2  

 
Fig. 6.2 Ring section subjected to torsion and shear 

 
The maximum equivalent shear in each of the vertical members is (z refers to the length of 
the vertical member): 

V*Ed = VEd  / 2 + (TEd · z) / 2·Ak  = [1300⋅103/2 + (700⋅106 ⋅1350)/(2⋅1.08⋅106)]⋅10-3 = 1087 kN 

Verification of compressed concrete with cot θ =1. It results: 

VRd,max = t z ν fcd sinθ cosθ = 200⋅1350⋅10.5⋅0.707⋅0.707 = 1417 k N > V*Ed 
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Determination of angle θ: 

⋅
θ = = =

ν ⋅ ⋅

*
oEd

cd

2V1 1 2 1087000arcsin arcsin 25.03
2 f tz 2 10.5 200 1350

   hence cotθ = 2.14 

Reinforcement of vertical members: 

(Asw /s) = V*Ed /(z fyd cot θ) =  (1087⋅103 )/(1350⋅435⋅2.14) = 0.865 mm2 /mm 

which can be carried out with 2-legs 12 mm bars, pitch 200 mm; pitch is in accordance 
with [9.2.3(3)-EC2]. 
Reinforcement of horizontal members, subjected to torsion only: 

(Asw /s) = TEd /(2⋅Ak⋅fyd⋅cot θ) = 700⋅106 /(2⋅1.08⋅106 ⋅435⋅2.14) = 0.348 mm2 /mm 

which can be carried out with 8 mm wide, 2 legs stirrups, pitch 200 mm. 
Longitudinal reinforcement for torsion: 

Asl = TEd ⋅ uk ⋅ cotθ /(2⋅Ak⋅fyd) = 700⋅106⋅4300⋅2.14/(2⋅1080000⋅435) = 6855 mm2  

to be distributed on the section, with particular attention to the corner bars. 
 
Longitudinal reinforcement for shear: 

Asl  = VEd ⋅ cot θ / (2 ⋅ fyd ) = 1300000⋅2.14/(2⋅435) = 3198 mm2  

To be placed at the lower end. 
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EXAMPLE 6.7 Shear – Torsion interaction diagrams [EC2 clause 6.3] 

 

 
Fig. 6.3 Rectangular section subjected to shear and torsion 

 
Example: full rectangular section b = 300 mm , h = 500 mm, z =400 mm (Fig. 6.3) 

Materials: 
fck = 30 MPa  

fcd  = 0.85·(30/1.5) = 17.0 MPa  

⎛ ⎞ν = ⋅ − =⎜ ⎟
⎝ ⎠

300.7 1 0.616
250

;  ν fcd = 10.5 MPa  

fyk = 450 MPa ; fyd = 391 MPa 

αcw = 1 

Geometric elements 
A= 150000 mm2 

u = 1600 mm 

t = A/u = 94 mm 

Ak = (500 – 94) ⋅ (300-94) = 83636 mm2  

Assumption: θ = 26.56o (cotθ = 2.0) 

It results: VRd,max  = αcw ⋅ bw⋅z⋅ν⋅fcd/ (cot θ+ tan θ)  = 10.5⋅300⋅400/(2+0.5) = 504 kN 

and for the taken z = 400 mm 

TRd,max = 2⋅10.5⋅83636⋅94⋅0.4471⋅0.8945  = 66 kNm 

resistant hollow 
section 
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Fig. 6.4. V-T interaction diagram for highly stressed section 

 
The diagram is shown in Fig. 6.4. Points below the straight line that connects the resistance 
values on the two axis represent safety situations. For instance, if VEd = 350 kN is taken, it 
results that the maximum compatible torsion moment is 20 kNm. 
On the figure other diagrams in relation with different θ values are shown as dotted lines. 
 
Second case: light action effects 
Same section and materials as in the previous case. The safety condition (absence of 
cracking) is expressed by: 

TEd /TRd,c + VEd /VRd,c ≤  1 [(6.31)-EC2]    

where TRd,c  is the value of the torsion cracking moment:  

τ = fctd = fctk /γc = 2.0/1.5 = 1.3 MPa (fctk deducted from Table [3.1-EC2]). It results 
therefore: 

TRd,c = fctd⋅ t⋅2Ak  = 1.3⋅94⋅2⋅83636 = 20.4 kNm  

VRd,c = ( )⎡ ⎤⋅ ⋅ ρ ⋅⎣ ⎦
1/3

Rd,c l ck wC k 100 f b d  

In this expression,  ρ = 0.01; moreover, it results: 

CRd,c = 0.18/1.5 = 0.12 

= + =
200k 1 1.63
500

 

( ) ( ) ( )ρ = ⋅ ⋅ =1/3 1/3 1/3
l ck100 f 100 0.01 30 30  
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Taking d = 450 mm it results: 

VRd,c = 0,12⋅1.63⋅ (30)1/3 ⋅ 300 ⋅ 450 = 82.0 kN 

The diagram is shown in Fig.6.5 
The section, in the range of action effects defined by the interaction diagram, should have a 
minimal reinforcement in accordance with [9.2.2 (5)-EC2] and [9.2.2 (6)-EC2]. Namely, 
the minimal quantity of stirrups must be in accordance with [9.5N-EC2], which prescribes 
for shear: 

(Asw / s⋅bw) min =  (0.08 ⋅ √fck)/fyk = (0.08 ⋅ √30)/450 = 0.010 

with s not larger than 0.75d = 0,.75⋅450 = 337 mm. 
Because of the torsion, stirrups must be closed and their pitch must not be larger than u/8, 
i.e. 200 mm. For instance, stirrups of 6 mm diameter with 180 mm pitch can be placed. It 
results : Asw/s.bw = 2⋅28/(180⋅300)  = 0.0010   
 

 
Fig. 6.5 V-T interaction diagram for lightly stressed section 
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EXAMPLE 6.8. Wall beam [EC2 clause 6.5] 

Geometry: 5400 x 3000 mm beam (depth b = 250 mm), 400 x 250 mm columns, columns 
reinforcement 6φ20 
 
We state that the strut location C2 is 200 cm from the bottom reinforcement, so that the inner 
drive arm is equal to the elastic solution in the case of a wall beam with ratio 1/h=2, that is 
0.67 h; it suggests to use the range (0.6 ÷ 0.7)·l as values for the lever arm, lower than the case 
of a slender beam with the same span. 

 
Fig. 6.6  5400 x 3000 mm wall beam. 

 
Materials: concrete C25/30 fck = 25 MPa, steel B450C fyk = 450 MPa 

2ck
cd

0.85f 0.85 25f 14.17 N / mm
1.5 1.5

⋅
= = = ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = =  

nodes compressive strength: 

compressed nodes  

ck

2
1Rd,max 1 cd

f1-
25250σ = k f = 1.18 1- 14.17 = 15 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

nodes tensioned – compressed by anchor logs in a fixed direction  
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ck

2
2Rd,max 2 cd

f1-
25250σ = k f = 1- 14.17 = 12.75 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

nodes tensioned – compressed by anchor logs in different directions  

ck

2
3Rd,max 3 cd

f1-
25250σ = k f = 0.88 1- 14.17 = 11.22 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

Actions 

Distributed load: 150 kN/m upper surface  and 150 kN/m lower surface  

Columns reaction 

R = (150+150)⋅5.40/2 = 810 kN 

Evaluation of stresses in lattice bars 

Equilibrium node 1   1
q lC 405 kN
2

= =  

Equilibrium node 3  3
RC 966 kN

senα
= =   (where 2000α arctg 56.98

1300
= = ° ) 

   kN526cosαCT 31 ==  

Equilibrium node 2 C2 = C3cosα = T1 = 526 kN 

Equilibrium node 4 kN405
2
lqT2 ==  

Tension rods 
The tension rod T1 requires a steel area not lower than: 

2
s1

526000A 1344 mm
391.,3

≥ =   we use  6φ18 = 1524 mm2, 

the reinforcement of the lower tension rod are located at the height of 0,12 h = 360 mm 

The tension rod T2 requires a steel area not lower than: 

2
s1

405000A 1035 mm
391.3

≥ =  We use  4φ20 = 1257 mm2 
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Nodes verification 
 
Node 3 
 
The node geometry is unambiguously 
defined by the column width, the wall 
depth (250 mm), the height of the side on 
which the lower bars are distributed and by 
the strut C3 fall (Fig. 6.7) 
 

 
Fig. 6.7 Node 3, left support. 

 
 
The node 3 is a compressed-stressed node by a single direction reinforcement anchor, then it 
is mandatory to verify that the maximal concrete compression is not higher than the value: 
 

2
2Rd,maxσ 12.75 N / mm=  

 
2

c1 2Rd,max
810000σ 8.1 N / mm σ
400 250

= = ≤
⋅

 

 
Remark as the verification  of the column contact pressure is satisfied even without taking into account the 
longitudinal reinforcement (6φ20) present  in the column. 
 

2
c2 2Rd,max

966000σ 7.27 N / mm σ
531.6 250

= = ≤
⋅
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EXAMPLE 6.9. Thick short corbel, ac < hc/2 [EC2 clause 6.5] 

Geometry: 250 x 400 mm cantilever (width b = 400 mm), 150 x 300 load plate, beam  
b x h = 400 x 400 mm 
 

Fig. 6.8 250 x 400 mm thick cantilever beam. Fig. 6.9 Cantilever beam S&T model. 
 
Materials: concrete C35/45 fck = 35 MPa, steel B450C fyk = 450 MPa 

 
2ck

cd
0.85f 0.85 35f = = = 19.83 N / mm

1.5 1.5
⋅ ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = =  

nodes compressive strength: 

compressed nodes  

ck

2
1Rd,max 1 cd

f1-
35250σ = k f = 1.18 1- 19.83 = 20.12 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠
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nodes tensioned – compressed by anchor logs in a fixed direction  

ck

2
2Rd,max 2 cd

f1-
35250σ = k f = 1- 19.83 = 17.05 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

nodes tensioned – compressed by anchor logs in different directions 

ck

2
3Rd,max 3 cd

f1-
35250σ = k f = 0.88 1- 19.83 = 15 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

Actions 

FEd = 700 kN 

Load eccentricity with respect to the column side: e = 125 mm (Fig. 6.8) 

The beam vertical strut width is evaluated by setting the compressive stress equal to σ1Rd,max: 

Ed
1

1Rd,max

F 700000x mm
σ b 20.12 400

= = ≅
⋅

87  

the node 1 is located x1/2 ≅ 44 mm from the outer column side (Fig. 6.9) 

We state that the upper reinforcement is located 40 mm from the upper cantilever side; the 
distance y1 of the node 1 from the lower border is evaluated setting the internal drive arm z 
equal to 0.8⋅d (z = 0,8⋅360 = 288 mm): 

y1 = 0.2d = 0.2·360 = 72 mm 

rotational equilibrium: Ed cF a F z=   c700000 (125 44) F 288⋅ + = ⋅  

c t
700000 (125 44)F F 410763 N 411 kN

288
⋅ +

= = = ≅  

node 1verification: 

( ) ( )
2 2c

1Rd,max
1

F 411000σ 7 N / mm σ N / mm
b 2 y 400 2 7

= = = ≤ =
⋅

.14 20.12
2

 

Main upper reinforcement design: 

2t
s

yd

F 411000A 1050 mm
f 391.3

= = =  we use 8φ14 (As = 1232 mm2) 

Secondary upper reinforcement design: 
The beam proposed in EC2 is indeterminate, then it is not possible to evaluate the stresses for 
each single bar by equilibrium equations only, but we need to know the stiffness of the two 
elementary beams shown in Fig. 6.10 in order to make the partition of the diagonal stress 

⎟
⎠
⎞

⎜
⎝
⎛ ==

senθ
F

cosθ
F

F Edc
diag  between them; 
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Fig. 6.10 S&T model resolution in two elementary beams and partition of the diagonal stress Fdiag. 

 

based on the trend of main compressive stresses resulting from linear elastic analysis at finite 
elements, some researcher of Stuttgart have determined the two rates in which Fdiag is divided, 
and they have provided the following expression of stress in the secondary reinforcement  
(MC90 par. 6.8.2.2.1): 

wd c
Ed c

z 2882 1 2 1
a 125 44F F 411 211 kN

3 F / F 3 700 / 411

− ⋅ −
+= = ≅

+ +
 

2 2wd
sw 1 s

yd

F 211000A 539 mm k A 0.25 1232 308 mm
f 391.3

= = ≅ ≥ ⋅ = ⋅ =     

we use 5 stirrups φ 10, double armed (Asw = 785 mm2) 

node 2 verification, below the load plate: 
The node 2 is a tied-compressed node, where the main reinforcement is anchored; the 
compressive stress below the load plate is: 

2 2Ed
2Rd,max

F 700000σ 15.56 N / mm σ 17.05 N / mm
150 300 45000

= = = ≤ =
⋅
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EXAMPLE 6.10 Thick cantilever beam, ac > hc/2 [EC2 clause 6.5] 

Geometry: 325 x 300 mm cantilever beam (width b = 400 mm), 150 x 220 mm load plate, 400 
x 400 mm column 

 
Fig. 6.11  325 x 300 mm cantilever. Fig. 6.12 Cantilever S&T model. 

The model proposed in EC2 (Fig. 6.12) is indeterminate, then as in the previous example one 
more boundary condition is needed to evaluate the stresses values in the rods; 
The stress Fwd in the vertical tension rod is evaluated assuming a linear relation between Fwd 
and the a value, in the range Fwd = 0 when a = z/2 and Fwd = FEd when a = 2⋅z. This 
assumption corresponds to the statement that when a ≤ z/2 (a very thick cantilever), the 
resistant beam is the beam 1 only (Fig. 6.13a) and when a ≥ 2⋅z the beam 2 only (Fig. 6.13b).  

 
a)                                                      b) 

Fig. 6.13. Elementary beams of the S&T model. 
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Assumed this statement, the expression for Fwd is: 

Fwd = Fw1 a + Fw2 

when the two conditions wd
zF (a ) 0
2

= =  and Fwd (a = 2z) = FEd are imposed, some trivial 

algebra leads to: 

Ed
w1

F2F
3 z

=  and    Ed
w2

F
F

3
= − ; 

in conclusion, the expression for Fwd as a function of a is the following: 

Ed Ed
wd Ed

F F2 2a / z 1F a F
3 z 3 3

−
= − = . 

Materials: concrete C35/45 fck = 35 MPa, steel B450C fyk = 450 MPa 

2ck
cd

0.85f 0,85 35f 19.83 N / mm
1.5 1.5

⋅
= = = ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = =  

Nodes compression resistance (same values of the previous example): 

Compressed nodes   
2

1Rd,maxσ 2 N / mm= 0.12  

tied-compressed nodes with tension rods in one direction  
2

2Rd,maxσ N / mm= 17.05  

tied-compressed nodes with tension rods in different directions  
2

3Rd,maxσ 1 N/mm5=  

Actions:  

FEd = 500 kN 

Load eccentricity with respect to the column outer side: e = 200 mm 

The column vertical strut width is evaluated setting the compressive stress equal to σ1Rd,max: 

Ed
1

1Rd,max

F 500000x 62 mm
σ b 20.12 400

= = ≅
⋅

 

node 1 is located x1/2 = 31 mm from the outer side of the column; 

the upper reinforcement is stated to be 40 mm from the cantilever outer side; the distance y1 
of the node 1 from the lower border is calculated setting the internal drive arm z to be  
0,8⋅d (z = 0,8⋅260 = 208 mm): 

y1 = 0.2d = 0.2·260 = 52 mm 
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rotational equilibrium: 

1
Ed c

xF a F z
2

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

c  500000 (200+31) = Fc 
. 208 

c t
500000 (200 31)F F 555288 N 556 kN

208
⋅ +

= = = ≅  

node 1 verification 

( ) ( )
2 2c

1Rd,max
1

F 556000σ = = = 13.37 N / mm σ = 20.12 N / mm
b 2 y 400 2 52

≤
⋅

 

Main upper reinforcement design: 

2t
s

yd

F 556000A 1421 mm
f 391.3

= = =   we use 8φ16 (As = 1608 mm2) 

Secondary  reinforcement design: 
(the expression deduced at the beginning of this example is used) 

w Ed

a2 1
zF F 204 kN
3

−
= ≅  

2w
w

yd

F 204000A 521 mm
f 391.3

= = =  

EC2 suggests a minimum secondary reinforcement of: 

2Ed
w 2

yd

F 500000A k 0.5 639 mm
f 391.3

≥ = =  we use 3 stirrups φ 12 (As = 678 mm2) 

node 2 verification, below the load plate: 
 
The node 2 is a compressed-stressed node, in which the main reinforcement is anchored; the 
compressive stress below the load plate is: 
 

2 2Ed
2Rd,max

F 500000σ 15.15 N / mm σ 17.05 N / mm
150 220 33000

= = = ≤ =
⋅
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EXAMPLE 6.11 Gerber beam [EC2 clause 6.5] 

Two different strut-tie trusses can be considered for the design of a Gerber beam, eventually 
in a combined configuration [EC2 (10.9.4.6)], (Fig. 6.14). Even if the EC2 allows the 
possibility to use only one strut and then only one reinforcement arrangement, we remark as 
the scheme b) results to be poor under load, because of the complete lack of reinforcement 
for the bottom border of the beam. It seems to be opportune to combine the type b) 
reinforcement with the type a) one, and the latter will carry at least half of the beam reaction. 
 
On the other hand, if only the scheme a) is used, it is necessary to consider a longitudinal top 
reinforcement to anchor  both the vertical stirrups and the confining reinforcement of the 
tilted strut C1. 

         
a)                                               b) 

Fig. 6.14 Possible strut and tie models for a Gerber beam. 

Hereafter we report the partition of the support reaction between the two trusses. 

Materials:  

concrete  C25/30  fck = 25 MPa,   

steel   B450C   fyk = 450 MPa   

  Es = 200000 MPa  [(3.2.7 (4)-EC2] 

2ck
cd

0.85f 0.85 25f 14.17 N / mm
1.5 1.5

⋅
= = = ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = =  

Actions:  

Distributed load: 250 kN/m 

Beam spam: 8000 mm 

RSdu = 1000 kN 

Bending moment in the beam mid-spam: MSdu = 2000 kNm 

Beam section: b x h = 800 x 1400 mm 

Bottom longitudinal reinforcement (As): 10φ24 = 4524 mm2 
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Top longitudinal reinforcement  (As’): 8φ20 = 2513 mm2 

 
Truss a) R = RSdu /2 = 500 kN 
 
Definition of the truss rods position 
The compressed longitudinal bar has a width equal to the depth x of the section neutral axis 
and then it is x/2 from the top border; the depth of the neutral axis is evaluated from the 
section translation equilibrium: 
 
0.8 b x fcd + Es ε’s A’s = fyd As 
 

 
Fig. 6.15 Truss a. 

( )'dx
x

0,0035ε '
s −⋅=  where d’ = 50 mm is the distance of the upper surface reinforcement 

cd s s yd s
x 500.8bx f E 0.0035 A' f A

x
−

+ =  

and then:  

x = 99 mm 

( ) yd'
s

s

f0.0035 391.3ε 99 50 0.00173 0.00196
99 E 200000

= ⋅ − = ≤ = =  

then the compressed steel strain results lower than the strain in the elastic limit, as stated in 
the calculation; 

the compressive stress in the concrete is 

C = 0.8 b x fcd = 0.8·800·99·14.17 

(applied at 0.4⋅x ≅ 40 mm from the upper surface) 

 

while the top reinforcement stress is: 

C’ = Es ε’s A’s = 200000·0.00173·2513 
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(applied at 50 mm from the upper surface) 

the compression net force (C + C’) results to be applied at 45 mm from the beam upper 
surface, then the horizontal strut has the axis at 675 – 50 - 45 = 580 mm from the tension rod 
T2. 

Calculation of the truss rods stresses 
Node 1 equilibrium:  

°== 53,77
425
580arctgα  1

RC 620 kN
sinα

= =   kN366cosαCT 12 =⋅=  

Node 2 equilibrium: 
580β arctg 38,66
725

= = °  

232 Tcos45CcosβC =°+  
2 3C sinβ C sin45= °  ⇒ 

2
2

TC 260 kN
sinβ cosβ

= =
+

 

3 2
sinβC C 230 kN

sin45
= ⋅ =

°
 

 
Node 3 equilibrium:  

T1 = C1 sin α + C2 sin β = 663 kN 
Tension rods design 

the tension rod T1 needs a steel area not lower than: 2
s1

663000A 1694 mm
391.3

≥ =  

we use 5 stirrups φ 16 double arm (Asl = 2000 mm2) 

the tension rod T2 needs a steel area not lower than: 2
s1

366000A 935 mm
391.3

≥ =  

we use 5 φ 16 (Asl = 1000 mm2). 

Truss b) R = RSdu /2 = 500 kN 

 
Fig. 6.16 Calculation scheme for the truss b bars stresses. 

Calculation of the truss rods stresses 
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node 1 equilibrium C’1 = 500 kN 

node 2 equilibrium 

C’2 = C’1 = 500 kN 

kN707C'2T' 11 =⋅=  

node 3 equilibrium 

C’3 = T’1 = 707 kN 

T’2 = (T’1 + C’3)·cos 45° = 1000 kN 
 
Tension rods 
 
for tension rod T’2 it is necessary to adopt a steel area not lower than: 

2
s1

1000000A 2556 mm
391.3

≥ =  

6φ24 = 2712 mm2  are adopted, 
 
a lower reinforcement area would be sufficient for tension rod T’1 but for question of bar 
anchoring the same reinforcement as in T’2 is adopted. 
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EXAMPLE 6.12 Pile cap [EC2 clause 6.5] 

Geometry: 4500 x 4500 mm plinth (thickness b=1500 mm), 2000 x 700 mm columns, 
diameter 800 mm piles   

 
Fig. 6.17 Log plinth on pilings. 

Materials: concrete C25/30 fck = 25 MPa, steel B450C fyk = 450 MPa 

2ck
cd

0.85f 0.85 25f 14.17 N / mm
1.5 1.5

⋅
= = = ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = =  

 

Nodes compression resistance (same values as in the example 6.8) 

Compressed nodes  σ1Rd,max = 15 N/mm2 

tied-compressed nodes with tension rods in one direction σ2Rd,max = 12.75 N/mm2 

tied-compressed nodes with tension rods in different directions σ3Rd,max = 11.22 N/mm2 

Pedestal pile 

NSd = 2000 kN 

MSd = 4000 kNm 

 



EC2 – worked examples  6-29 

Table of Content 

Tied reinforcement in the pile: 8 φ 26 (As = 4248 mm2) 

The compressive stress Fc in the concrete and the steel tension Fs on the pedestal pile are 
evaluated from the ULS verification for normal stresses of the section itself: 

Fs = fyd As = 391.3·4248 = 1662242 N = 1662 kN 

NSd = 0.8 b x fcd – Fs  ⇒  2000000 = 0.8·700·x·14.17 − 1662242 ⇒   x = 462 mm 

The compressive stress in the concrete is: 

C = 0.8 b x fcd = 0.8·700·462·14.17 = 3666062 N = 3666 kN 

(applied at 0,4⋅x ≅ 185 mm from the upper surface) 

 

piles stress 

pile stresses are evaluated considering the column actions transfer  in two steps:  

in the first step,  the transfer of the forces Fc e Fs happens in the plane π1 (Fig. 6.17) till to the 
orthogonal planes π2 and π3, then in the second step the transfer is inside the planes π2 and π3 
till to the piles; 

the truss-tie beam in Fig. 6.18 is relative to the transfer in the plane π1: 

compression:  A’ = (MSd/3.00 + NSd/2) = (4000/3.00 + 2000/2) = 2333 kN 

tension:  B’ = (MSd/3.00 - NSd/2) = (4000/3.00 - 2000/2) = 333 kN 

for each compressed pile:   A=A’/2 = 1167 kN 

for each tied pile:    B=B’/2 = 167 kN 

In the evaluation of stresses on piles, the plinth own weight is considered negligible. 

 
Fig. 6.18. S&T model in the plane π1. 
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θ11 = arctg (1300 / 860) = 56.5° 
θ12 = arctg (1300 / 600) = 65.2° 
T10 = Fs = 1662 kN  
T11 = A’ cot θ11 = 2333 cot 26.5° = 1544 kN 
T12 = B’ cot θ12 = 333 cot 65.2° = 154 kN 

 
Fig. 6.19 Trusses in plan π2 and in plan π3. 

θ13 = arctg (1300 / 1325) = 44.5° 
T13 = A = 1167 kN 
T14 = A cot θ13 = 1167 cot 44.5° = 1188 kN 
T15 = B cot θ13 = 167 cot 44.5° = 170 kN 
T16 = B = 167 kN 
 
design of tension rods 

Table 6.3 

Tension rod Force 
(kN) 

Required 
reinforcement  

(mm2) 
Bars 

10 (plinth tied reinforcement) 1662 4248 8φ26 
11 1544 3946 9φ24 
12 154 394 1φ12/20 (6φ12) 
13 1167 2982 stirrups 10φ20 
14 1188 3036 7φ24 
15 170 434 1φ12/20 (5φ12) 
16 167 427 Pile reinforcement 
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Fig. 6.20. Schematic placement of reinforcements. 

 
Nodes verification 
Concentrated nodes are only present at the pedestal pile and on the piles top. In these latter, 
the compressive stresses are very small as a consequence of the piles section large area.: 
 

2
c 2 2

A 2333000σ 4.64 N mm
π r π 400

= = =
⋅ ⋅
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EXAMPLE 6.13 Variable height beam [EC2 clause 6.5] 

Geometry: length 22500 mm, rectangular section 300 x 3500 mm and 300 x 2000 mm 
 

 
Fig. 6.21 Variable height beam 

Materials: concrete C30/37 fck = 30 MPa, steel B450C fyk = 450 MPa 

2ck
cd

0.85f 0.85 3f 17 N / mm
1.5 1,5

0⋅
= = = ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = =  

Nodes compressive resistance: 

compressed nodes (EC2 eq. 6.60)  

ck

2
1Rd,max 1 cd

f1-
30250σ = k f = 1.18 1- 17 = 17.65 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

tied-compressed nodes with tension rods in one direction  

ck

2
2Rd,max 2 cd

f1-
30250σ = k f = 1- 17 = 14.96 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

tied-compressed nodes with tension rods in different directions  

ck

2
3Rd,max 3 cd

f1-
30250σ = k f = 0.88 1- 17 = 13.16 N / mm

0.85 250

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

loads 

F = 1200 kN 

(the own weight of the beam is negligible) 
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strut&tie model identification 

Beam partitioning in two regions B and D 

The region standing on the middle section is a continuity region (B), while the remaining part 
of the beam is composed of D type regions.  

The boundary conditions for the stress in the region B. 

 
Fig. 6.22 Identification of B and D regions. 

Stresses evaluation for the bars of the S&T model 

Tmax = 1200 kN 

Mmax = 1200 ⋅ 3.00 = 3600 kNm = 3.6⋅109 Nmm 

 
Fig. 6.23 Shear and bending moment diagrams. 

Calculation of stresses in the region B 

The stress-block diagram is used for the concrete compressive stresses distribution;  

rotational equilibrium: 

fcd 0.8·x·b·(d – 0.4 x) = 3.6·109 

17·0.8·x·300·(1900 – 0.4 x) = 3.6·109 

7752000·x – 1632·x2 = 3.6 109 ⇒ x = 522 mm 

C = fcd 0.8·x·b  = 17·0.8·522·300 = 2129760 N = 2130 kN 
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Identification of boundary stresses in the region D 

 
Fig. 6.24 Reactions and boundary stresses in the region D. 

strut&tie model  

Fig. 6.25 shows the load paths characterized by Schlaich in the strut&tie model identification, 
shown in Fig. 6.26. 

 
Fig. 6.25 Load paths. 

 

Fig. 6.26. Strut and tie model. 

The strut C2 tilting is 
3190θ arctg 46.76
3000

= = °   

while the strut C4 tilting is 

1
1690θ arctg 48.41
1500

= = ° . 
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The following table reports the value for the stresses in the different beam elements. 
Table 6.4 

C1 See stresses evaluation in the region B 2130 kN 
T1 T1=C1 2130 kN 
C2 C2 = F/sin θ (Node A vertical equilibrium) 1647 kN 
T3 T3 = C2 cos θ  (Node A horizontal equilibrium.) 1128 kN 
T2 T2 = T3, because C5 is 45° tilted (node C equil.) 1128 kN 
C3 C3 = C2 cos θ = T3 (Node B horizontal equil.) 1128 kN 
Floop Floop = C1 – C3 1002 kN 
C4 C4 = Floop/cos θ 1509 kN 
C5 2TC 25 ⋅= ( Node C vertical equil.) 1595 kN 

Steel tension rods design 

EC2 point 9.7 suggests that the minimum reinforcement for the wall beams is the  0,10 % of 
the concrete area, and not less than 150 mm2/m, and it has to be disposed on both sides of 
the structural member and in both directions. Bars φ 12 / 20” (=565 mm2/m > 0,10 % ⋅ 300 ⋅ 
1000 = 300 mm2/m e di 150 mm2/m) are used. 

The following table reports the evaluation for the reinforcement area required for the three 
tension bars T1, T2 and T3. 

Table 6.5 

T1 As = 2.13·106/391.3 = 5443 mm2 18 φ 20 = 5655 mm2 

T2 As = 1.128·106/391.3 = 2883 mm2

on 1,50 m length 
stirrups φ 12 / 10”  2 legs = 2260 mm2/m 
(2260 ⋅ 1,50 = 3390 mm2) 

T3 As = 1.128·106/391.3 = 2883 mm2

on two layers 10 φ 20 = 3142 mm2 

Verification of nodes 

Node A (left support) 

 
Fig. 6.27 Node A. 

tied-compressed nodes with tension rods in one direction  [(6.61)-EC2] 

σ2Rd,max = 14.96 N/mm2 
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Loading plate area: 
6

2c1

2Rd,max

F 1.2 10A 80214 mm
σ 14.96

⋅
≥ = =  

a 300 x 300 mm plate (A = 90000 mm2) is used 

the reinforcement for the tension rod T3 is loaded on two layers (Fig. 6.27):   u = 150 mm     
a1 = 300 mm 

a2 = 300 sin 46.76° + 150 cos 46.76° = 219 + 103 = 322 mm 
6

2 2
c2

1.647 10σ 17.05 N / mm 14.96 N / mm
300 322

⋅
= = >

⋅
 

u has to be higher (it is mandatory a reinforcement on more than two layers, or an increase of 
the plate length); this last choice is adopted, and the length is increased from 300 to 400 mm: 

a2 = 400 sin 46.76° + 150 cos 46.76° = 291 + 103 = 394 mm 
6

2 2
c2

1.647 10σ 13.93 N / mm 14.96 N / mm
300 394

⋅
= = ≤

⋅
 

Node B 
Compressed nodes  

σ1Rd,max = 17.65 N/mm2 

 
Fig. 6.28 Node B. 

a3 = 522 mm (coincident with the depth of the neutral axis in the region B) 

3

6
2 23

c
C 1.128 10σ 7.2 N / mm 17.65 N / mm

300 522 300 522
⋅

= = = ≤
⋅ ⋅

 

load plate dimensions: 
61.2 10a* 227 mm

300 17.65
⋅

≥ =
⋅

 

a 300 x 300 mm plate is used 

 
Strut verification 
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The compressive range for each strut (only exception, the strut C1,  which stress has been 
verified before in the forces evaluation for the region B) can spread between the two ends, in 
this way the maximal stresses are in the nodes. 

The transversal stress for the split of the most stressed strut (C2) is: 

Ts ≤ 0.25·C2 = 0.25 1647 = 412 kN; 

and then, for the reinforcement required to carry this stress: 

2
s

412000A 1053 mm
391.3

= = , 

then the minimum reinforcement (1 φ 12 / 20” on both sides and in both directions, that is  
as = 1130 mm2/m) is enough to carry the transversal stresses.
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EXAMPLE 6.14.  3500 kN concentrated load  [EC2 clause 6.5] 

3500 kN load on a 800x500 rectangular column by a 300x250 mm cushion 
 
Materials:  
 concrete  C30/37  fck = 30 MPa,   
 steel   B450C   fyk = 450 MPa   Es = 200000 MPa  
 

2ck
cd

0.85f 0.85 30f 17 N / mm
1.5 1.5

⋅
= = = ,  

yk 2
yd

f 450f 391.3 N / mm
1.15 1.15

= = = , 

loading area 

Ac0 = 300·250 = 75000 mm2 
dimensions of the load distribution area 

d2 ≤ 3 d1 = 3·300 = 900 mm 

b2 ≤ 3 b1 = 3·250 = 750 mm 
maximal load distribution area 

Ac1 = 900·750 = 675000 mm2 

load distribution height 

 
( ) mm500250750bbh 12 =−=−≥  

 
( ) mm600300900ddh 12 =−=−≥  

⇒ h = 600 mm 

 

Ultimate compressive stress 

Rdu c0 cd c1 c0

6
cd c0

F A f A / A 75000 17 675000 / 75000 3825 kN

3.0 f A 3.0 17 75000 3.825 10 N

= = ⋅ ⋅ = ≤

≤ = ⋅ ⋅ = ⋅
 

It is worth to observe that the FRdu upper limit corresponds to the the maximal value Ac1 = 3 
Ac0  for the load distribution area, just as in this example; the 3500kN  load results to be lower 
than FRdu . 

Reinforcement design 

Point [6.7(4)-EC2] recommends the use of a suitable reinforcement capable to sustain the 
transversal shrinkage stresses and point [6.7(1)P-EC2] sends the reader to paragraph [(6.5)-
EC2] to analyse this topic. 

In this case there is a partial discontinuity, because the strut width (500 mm) is lower than the 
distribution height (600 mm), then: 

a = 250 mm 
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b = 500 mm 

 

F b a 3500 500 250T 437.5 kN
4 b 4 500

− −
= = =    

the steel area required to  carry T is: 

2
s

yd

T 437500A 1118 mm
f 391.3

≥ = =  

using 10 mm diameter bars, 15 bars are required for a total area of: 

As = 15 ⋅ 78.5 = 1178 mm2.
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EXAMPLE 6.15 Slabs1,2 [EC2 clause 5.10 – 6.1 – 6.2 –  7.2 – 7.3 – 7.4] 

As two dimensional member a prestressed concrete slab is analysed: the actual structure is 
described in the following point. 

6.15.1 Description of the structure 

The design example proposed in this section is related to a railway bridge deck made up by 
a continuous slab on three spans with two orders of prestressing tendons (longitudinal and 
transverse prestressing). The slab is designed in category A (see Eurocode 2, Part 2, table 
4.118) for fatigue reasons. The deck rests on abutments and circular piers and has a overall 
breadth of 13.60 m with two side-walks of 1.40 m width, two ballast retaining walls and, in 
the middle, two track spacing of 5.0 m. The slab presents a constant thickness of 1.50 m 
for a central zone 7.0 m width, whilst is tapered towards the extremity with a final height 
of 0.6 m. Fig.s 6.29  and 6.30 represent the principal geometric dimension of the slab 
bridge and supports’ scheme. 

 
Fig. 6.29  Plan view of the structure and supports’ scheme 

                                                 
1 Example taken from example 7.2 “slabs” by prof. Mancini, FIB Bullettin n°3, “Structural Concrete 
Textbook on Behaviour, Design and Performance Vol. 3: Durability - Design for Fire Resistance - Member 
Design - Maintenance, Assessment and Repair - Practical aspects” Manual - textbook (292 pages, ISBN 978-
2-88394-043-7, December 1999). 
 
2 See too EN 1992-2 Eurocode 2, bridge design. 
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Fig. 6.30  Geometric dimensions of bridge cross section 

Material properties 

The following materials properties have been considered: 

− Concrete Grade 35: fck = 35.0 MPa; 
 compressive design strength: fcd = 23.3 MPa; 
 compressive resistance for uncracked zones: fcd1 = 17.1 MPa; 
 compressive resistance for cracked zones: fcd2 = 12.0 MPa; 
 mean value of tensile strength: fctm = 3.23 MPa; 
 modulus of elasticity: Ec = 29.7·103 MPa; 
 shear modulus: G = 12.4·103 MPa 
 Poisson ratio: ν = 0.2 

− Prestressing steel, (strands φ 0.6”): fptk = 1800 MPa; 
 0.1% proofstress fp0.1k = 1600 MPa 
 total elongation at maximum load: εpu  > 35‰ 
 modulus of elasticity: Ep = 195.0·103 MPa; 

− Reinforcing steel, Grade 500: fyk = 500.0 MPa; 
 design strength: fyd = 434.8 MPa; 
 modulus of elasticity: Es = 200.0·103 MPa. 

Concrete cover 

As environmental condition an Exposure Class 2 may be considered (Humid environment 
with frost: exterior components exposed to frost). 

The minimum concrete cover for Class 2 is equal to 25 mm, which should be added to 
the tolerance value of 10mm; as a consequence the nominal value for concrete cover 
results: 

 cnom = cmin + 10 = 25 + 10 = 35 mm 

adopted in the calculations. 
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6.15.2 Structural model 

To evaluate the internal actions on the structure a linear FEM analysis has been 
performed adopting shell elements to represent the reinforced slab; this kind of element 
takes account of all the slab and plate components as well as the out-of-plane shear forces.  
The thickness of shell elements has been assumed constant for the inner zone of the slab 
and stepped to fashion the tapered extremity. In Fig 6.31 and 6.32 the FEM model is 
sketched and the different thick of the element is reported too.  

 
Fig. 6.31  Transverse view of FEM model 

 
Fig. 6.32 Plan of FEM model and considered elements 

The adopted shell elements are oriented with the following guidelines: 

− local axis 2 is oriented as global axis Y of the deck; 

− local axis 3 is oriented in the opposite direction of global axis X of the deck; 

− local axis 1 is oriented as global axis Z of the deck. 

Positive forces for FEM program output are reported in Fig. 6.33: 
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Fig. 6.33 Positive actions for FEM elements 

Restraints 

The external restraints have been introduced in the FEM model considering their real 
geometric dimensions; thus, few nodes have been restrained by means of spring elements 
in order to represent only an individual restraint or support. Fig. 6.34 shows a symbolic 
notation for the external restraints with the nodes involved. 

 
Fig. 6.34  External restraints on the FEM model 

The elastic constant of the spring restraining elements is calculated to have the same 
stiffness of the substructure (abutments or piers) on which the slab is rested.  For the x and 
y directions, it may be assumed that the pier, or the abutment front wall, behaves like a 
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single column fixed at the base and free at his top, so that the relevant Kx/y stiffness is 
valuable as: 

 K EI
Hx / y =

3
3  

where E is the Young modulus, I the inertia and H the height of the column. For the 
vertical direction, the intrinsic stiffness of pot-bearing is assumed, considering the 
substructure vertical behaviour as rigid. 

For the sake of simplicity the calculus of the relevant stiffness is omitted and the final 
values of the spring constants are reported in table 6.6 . 

Location 
Kx,tot Ky,tot Kz,tot 

106  kN/m 106  kN/m 106  kN/m 
Abutment A 9.55 178.80 10.02 
Pier P1  4.74 11.61 
Pier P2  2.66 11.61 
Abutment B  2.78 10.02 

Table 6.6  Stiffness for restraining elements 

It can be noticed that the previous values are referred to the overall stiffness of the 
restraint, thus the elastic constant of any individual spring element may be obtained 
dividing the K values of table 6.6 by the number of element representing the restraint or 
the supports. 

 

Prestressing forces 

Two orders of prestressing tendons are arranged (in longitudinal and transverse directions) 
in order to avoid any tensile stress in concrete at service (required by railway code).  The 
initial tensile stress of tendon is:   

σpo,max = 0.85 fp 0.1k = 0.85 × 1600 = 1360 MPa.   

The number of tendons is 39 for the longitudinal direction and 64 for the transverse one.  
Each tendon is built up with 19 strands φ 0.6” having an area of 1.39 cm2. Fig. 6.35 reports 
tendon’s layout for half deck, being symmetrically disposed. 
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Fig. 6.35  Plan and principal section of tendon layout 

Immediate losses of prestressing due to friction have been evaluated by means of the 
following expression: 

 σpo (x) = σpo,max ⋅ e-μ(α + k x) 

with: 

 μ = 0.19 coefficient of friction between the tendons and their sheathing; 

 k = 0.01 rad/m unintentional angular deviation. 

Prestressing has to be introduced in the FEM model in order to calculated the hyperstatic 
actions that arise in the structural scheme. Considering prestressing as an external load, it is 
possible to introduce it by means of two inclined forces at anchorages (representing actions 
at the extremity) and of a system of equivalent loads along tendon’s profile (representing 
tendon curvature and losses due to friction): these actions per tendon, should be applied 
consistently at the nodes of FEM model. 

The equivalent loads may be calculated subdividing the tendon profile into elementary 
segments and evaluating the internal action able to equilibrate the external one due to end 
actions deriving by the prestressing. 



EC2 – worked examples  6-46 

Table of Content 

 
Fig. 6.36 Effect of prestressing on a segment and equivalent loads 

Fig. 6.36 represents the forces acting on a segment of concrete due to a curved 
prestressing tendon; if the inclination of the cable changes from θ1 to θ2 while the prestress 
force changes from P1 to P2 due to friction, the equilibrating vertical and horizontal forces 
in the i-segment result: 

 Fv,i = P2 sin θ2  P1 sin θ1  ; Fh,i = P2 cos θ2  P1 cos θ1 

while the balancing moment turns out: 

 Mi = (P2 cos θ2 e2  P1 cos θ1 e1 )  (P2 sin θ2  P1 sin θ1 ) a/2 

The above procedure should be repeated for all the segments. It can be notice that the 
forces at the end of each segment extremity are the same with opposite signs, depending on 
whether the right or the left segment is considered; these forces cancel out themselves with 
the exception at anchorages. Finally, for each tendon, the forces at the extremity of the 
cable plus the equilibrating system for each segment, shall be introduced in the FEM 
model. 

The choice of the position of the elementary segments is relative to the kind of element 
adopted in the FEM model. If beam elements are used, it is possible to introduce a point 
load (or moment) whether along the element body or at nodes, consequently the segment 
extremities may be placed indifferently at nodes or at the middle of the element. With shell 
elements, only nodal forces can be considered so that it is necessary to place segment 
extremities within two sequential nodes; furthermore, due to the two-dimensional scheme, 
one has to consider the transverse position of the tendon that, in general, do not coincide 
with a nodal alignment. As a simple rule, the indications of Fig. 6.37 may be followed. 
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Fig. 6.37 Transverse distribution of prestressing 

Time-dependent prestressing losses 

Time-dependent losses of prestress may be evaluated by means of the following equation: 

 
( )

Δσ
Δσ

p c s r
cs s pr cg cp

p

c

c

c
cp

t t E t t
A
A

A
I

z t t
,

( , ) ( , ) ( )

. ( , )
+ +

∞ ∞

∞

=
+ + +

+ +
⎛
⎝
⎜

⎞
⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥

ε α φ σ σ

α φ

0 0 0

2
01 1 1 0 8

  

where: 

Δσp,c+s+r : loss of initial tendon stress due to creep and shrinkage of concrete and 
relaxation of steel, between time t0 and time t∞; 

t0 = 28 days: age of concrete at prestressing time; 

t∞ = 25550 ds.: corresponding to a life-time of 70 years; 

εcs (t∞,t0) : shrinkage strain at time t∞ calculated from: 
 εcs (t∞ ,t0) = εcs0 × βs (t∞ - t0) =  0.127 × 10-3   

where: εcso = εs ( fcm) × βRH  with: 

 εs ( fcm) = [160 + 10 βsc (9 fcm / fcmo)] × 10-6 = 0.000395 

 fcm = mean compressive strenght of concrete at 28 days = fck  + 8 MPa; 

 fcmo = 10 MPa; 

 βsc = 5  for rapid hardening cements; 

 βRH = − −
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 55 1
100

3

. RH  = 1.018; 

 RH = 70 % relative humidity of the ambient atmosphere; 

βs (t∞ - t0) = t t
h t t
∞

∞

−
⋅ + −

0
2

00 035.
= 0.574 
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 h = (2Ac / u) = 1217 mm  notional size of member; 

 Ac = 17.43×106 mm2   gross section of the beam; 

 u = 28640 mm perimeter of the member in contact with the atmosphere; 

φ (t∞,t0) : creep coefficient at time t∞ calculated from: 
φ (t∞,t0) = φ0 × βc (t∞ - t0) = 1.5708  where: 

φo = φRH × β( fcm) × β(t0) = 1.598    with 

 φRH = 1 1 100
0 1 3

+
− RH

h.
= 1.281; 

 β( fcm) = 5 3.
f fcm cmo

 = 2.556; 

 β(t0) = 1
0 1 0

0 2. .+ t
 = 0.488 

βc (t∞ - t0) = t t
t tH

∞

∞

−
+ −

⎛
⎝
⎜

⎞
⎠
⎟0

0

0 3

β

.

 = 0.983     with 

 βH = ( )[ ]1 5 1 0 012 25018. .+ +RH h = 2155 > 1500  →  1500 

If the improved prediction model of chapter 3 is used, the following values 
for εcs (t∞ , t0) and for φ(t∞ , t0) may be evaluated: 

 εcs (t∞ , t0) = 182.62 × 10-6 ; φ (t∞ , t0) = 1.5754 

in good aggrement with the previous one, at least for creep value. 

Δσpr : loss of prestressing due to relaxation of steel calculated for a reduced initial 
tensile stress of σp = σpgo  0.3 Δσp,c+s+r (where σpgo is the effective initial 
stress in tendons due to dead load and prestressing) and evaluated as 
percentage by the following formula: 

ρt = ρ1000h 
t

1000

0 19
⎛
⎝⎜

⎞
⎠⎟

.

 = ρ1000h × 3   where  

 ρt = is the relaxation after t hours; for t  > 50 years  ρt. = ρ1000h × 3; 

 ρ1000h = is the relaxation after 1000 hours evaluated from Fig. 6.38; 
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Fig. 6.38 Relaxation losses in % at 1000 hours for Class 2 

σc. : stress on concrete at level of pretensioned steel due to self weight and 
permanent load; 

σcpo : stress on concrete at level of pretensioned steel due to prestressing; 

α = Es/Ec: modulus of elasticity ratio; 

Ap : area of prestressing steel at the considered level; 

Ac : area of concrete gross section; 

Ic : inertia of concrete gross section; 

zcp : lever arm between centroid of concrete gross section and prestressing steel. 

Time-dependent losses of prestressing should be calculated for each tendon along his 
profile so that a correct value may be used for each element. As a reference, the maximum 
value of prestressing losses, as percentage of initial steel tension, turn out: 

longitudinal tendon:  19% at anchorage  and 14% at pier axis; 

transverse tendon: 18% at anchorage  and 12% at midspan. 

The effects of losses are taken into account with the same procedure used for the 
prestressing, but as actions of opposite sign. 

6.15.2 Actions 

The external loads applied on the structure should be evaluated according to the provisions 
of Eurocode 1.3 Traffic Load on Bridges. As vertical train load the load model LM71 plus 
the load models SW (SW/0 and SW/2 respectively) have been adopted with an α 
coefficient of 1.1. For the LM71, the 4 point loads have been reduced in an equivalent 
uniform load by smearing their characteristic value Qvk along the influence length so that a 
qvk,1 may be obtained: 

 Qvk = 1.1×250×φdin = 319.6 kN → qvk,1 = 319.6/1.6 = 199.75 kN/m 
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where φdin , being the dynamic factor equal to 1.162, is evaluated below. 

 
Fig. 6.39  Adopted load arrangement for LM71 load model 

The uniformly distributed load qvk according to Eurocode 1.3 is: 

 qvk = 1.1 × 80 × φdin → qvk,2 = 102.3 kN/m 

without any limitation in length.  Fig. 6.39 shows the LM71 arrangement adopted in the 
calculations. 

The load model SW/0 is represented in Fig. 6.40 and its characteristic value results: 

 qvk = 1.1 × 133 × φdin = 170.0  kN/m 

 
Fig. 6.40  Load model SW/0 

The load model SW/2 is represented in Fig.6.41 and its characteristic value results: 

 qvk = 1.1 × 150 × φdin = 174.3  kN/m 

 
Fig. 6.41 Load model SW/2 

The previous load model LM71, SW/0 and SW/2 have been introduced in the FEM 
analysis considering a spreading ratio of 4:1 in the ballast and of 1:1 in the concrete up to 
the middle plane of the slab.  In the following as left track is denoted the track which has a 
positive value for the y co-ordinate, while right truck the other one.  Fig. 6.42 shows which 
elements are involved by spreading effects, therefore subjected to variable load. 
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Fig. 6.42 Spreading effects on FEM model and loaded elements 

The dynamic factor φ is calculated by means of the following expression (track with 
standard maintenance): 

 =+
−

= 0.73
0.2L

2.16
3

φ

φ 1.162 

where Lφ is the determinant length defined in the Eurocode 1.3 as: 

 L L L L
φ =

+ +
=

+ +
=13

3
13 17 33 27 75 17 33

3
27 041 2 3. . . . . . m 

Several other actions, arising from variable loads, should be considered in the analysis 
(as traction and braking, centrifugal forces, derailment, wind pressure, differential 
temperature variation etc.) but, for the sake of simplicity, in these calculations only the 
following actions have been considered (introduced in the mathematical model in different 
steps): 

− STEP 1:  Self-weight of the structure: adopting a unit weight value of  � = 25 kN/m3; 

− STEP 2:  Prestressing forces at time of tensioning; 

− STEP 3:  Prestressing forces after time-dependent losses: 

in the calculations, a limit value of tensile stress in tendon equal to 0.6×fptk  
after allowance for losses (t∞), has been considered, according to the 
provisions of the applied Railway Code to avoid the risk of brittle failure due 
to stress corrosion. 

− STEP 4:  Track load comprehensive of; 

rails, sleepers and ballast (waterproofing included) evaluated as a cover with 
a nominal height of 0.8 m and a unit weight of  γ = 18 kN/m3), so that for a 
width of 9.5 m, an uniformly distributed load results: 

gballast = 0.8×1.8×9.5 = 136.8 kN/m; 

− STEP 5:  Others permanent loads composed by; 

transverse gradient for drain water, assumed as a load of 1.25 kN/m2 it turns 
out: 
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gdrain = 1.25×9.5 = 11.875 kN/m; 

ballast retaining walls (with a cross section area of 0.25 m2 and unit weight of 
25 kN/m3) 

gwalls = 25×0.25 = 6.25 kN/m  for each; 

ducts: 

gducts = 3 kN/m  for each; 

border curbs (with a cross section area of 0.1 m2 and unit weight of 
25 kN/m3): 

greinf beam = 25×0.25 = 6.25 kN/m  for each; 

noise barriers: 

gbarriers = 8.00 kN/m for each; 

− STEP 6:  Variable loads for maximum bending moment on first span (x = 6.18 m); 

the applied load is a LM71 model on the left track with the following 
longitudinal arrangement: 

 
Fig. 6.43  LM71 arrangement for Load Step 5 

plus a SW/2 train on the right track with the following longitudinal 
arrangement: 

 
Fig. 6.44  SW/2 arrangement for Load Step 5 

− STEP 7:  Variable loads for minimum bending moment at pier P1 (x = 18.43 m); 

the applied load is a SW/0 model on the left track with the following 
longitudinal arrangement: 
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Fig. 6.45  SW/0 arrangement for Load Step 6 

plus a SW/2 train on the right track with the following longitudinal 
arrangement: 

 
Fig. 6.46   SW/2 arrangement for Load Step 6 

− STEP 8:  Variable loads for max bending moment on second span (x = 32.305 m); 

the applied load is a LM71 model on the left track with the following 
longitudinal arrangement: 

 
Fig. 6.47 LM71 arrangement for Load Step 7 

plus a SW/2 train on the right track with the following longitudinal 
arrangement: 

 
Fig. 6.48 SW/2 arrangement for Load Step 7 
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6.15.3 Combinations of Actions 

The design values for the external actions have been calculated adopting the combinations 
of loads specified in the applied Code as follow indicated in the symbolic presentation: 

− Ultimate Limit State 

 S Sd = + + + +
⎛
⎝
⎜

⎞
⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭>

∑γ γ γ γG k G k p k Q k oi ik
i

G G P Q Q1 1 2 2 1
1

Ψ   

− Serviceability Limit State: rare combination 

 S Sd = + + + +
⎧
⎨
⎩

⎫
⎬
⎭>

∑G G P Q Qk k k k oi ik
i

1 2 1
1

Ψ   

− Serviceability Limit State: quasi-permanent combination 

 S Sd = + + +
⎧
⎨
⎩

⎫
⎬
⎭>

∑G G P Qk k k i ik
i

1 2 2
1

Ψ  

where: 

G1k  = characteristic value of the action due to self-weight and permanent loads, ballast 
excluded; 

G2k  = characteristic value of action due to ballast self-weight; 

Pk  = characteristic value of action due to prestress; 

Q1k  = characteristic value of action due to the base variable action; 

Qik  = characteristic value action due to of the other independent variable loads; 

γ1  = partial factor of self-weight and permanent loads, ballast excluded, equal to 1.4 
for unfavourable effect and 1.0 for favourable effect; 

γ2  = partial factor of ballast load equal to 1.8 for unfavourable effect and 1.0 for 
favourable effect; 

γP  = partial factor of prestress load equal to 1.2 for unfavourable effect and 0.9 for 
favourable effect; 

γQ  = partial factor of variable loads equal to 1.5 for unfavourable effect and 0.0 for 
favourable effect; 

Ψ0i  = combination factor of variable loads equal to 0.8; 

Ψ2i  = combination factor of variable loads for quasi-permanent combination at service, 
equal to 0.6. 
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6.15.4 Verification at Serviceability Limit State 

The verification at serviceability limit state is relative to the following conditions: 

− stress limitation at tensioning; 

− stress limitation at service; 

− crack widths; 

− deformation. 

Verification at tensioning 

At time of tensioning, no tensile stress should be present in the extreme fibres of the slab 
and the maximum compressive stress should not exceed the limit value of  0.6 × fck = 21 
MPa.  For the sake of simplicity, one reports the verification related to the four elements 
showed in fig ii, as subjected to the higher stress level. 

The external actions are calculated adopting the rare combination with only the load steps 
1 and 2. From FEM analysis, the value of n22 , m22 , n33 , m33 , n23 , m23  are evaluated so that 
it results: 

 σ σy t t h h, ,= = −22
22 22

2
6n m  ; σ σy b b h h, ,= = +22

22 22
2

6n m  

 σ σx t t h h, ,= = −33
33 33

2
6n m  ; σ σx b b h h, ,= = +33

33 33
2

6n m  

 σ σxy t t h h, ,= = −23
23 23

2
6n m  ; σ σxy b b h h, ,= = +23

23 23
2

6n m  

where the subscripts t and b indicate respectively top and bottom fibre.  The angles of 
principal directions (for which is σxy = 0) are: 

 θ
σ

σ σ1
23

22 33

1
2

2
=

−
⎛
⎝
⎜

⎞
⎠
⎟a tan  ; θ2 = θ1 + 90° 

and the principal stresses result: 

 σ σ θ σ θ σ θ1 22
2

1 33
2

1 23 12, / , / , / , /cos ( ) ( ) ( )t b t b t b t bsin sin= + +  

 σ σ θ σ θ σ θ2 22
2

2 33
2

2 23 22, / , / , / , /cos ( ) ( ) ( )t b t b t b t bsin sin= + +  

Referring to the elements marked in Fig.6.32 one obtains:  
Table 6.7 

Elem. h n 22 n 33 n 23 m 22 m 33 m 23

[m] [kN/m] [kN/m] [kN/m] [kNm/m] [kNm/m] [kNm/m]

648 1.5 -3091 -13159 6 -225 -2176 0
93 0.963 -7806 -8526 75 743 456 -51
320 1.5 -3516 -10418 1 -45 -812 0
589 1.5 -4280 -10007 -67 653 1945 20  

Table 6.8 
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σ22,b σ33,b σ23,b σ22,t σ33,t σ23,t θ1,b θ2,b θ1,t θ2,t σ1,b σ2,b σ1,t σ2,t

[Mpa] [Mpa] [Mpa] [Mpa] [Mpa] [Mpa] [°] [°] [°] [°] [Mpa] [Mpa] [Mpa] [Mpa]

-2.66 -14.58 0.00 -1.46 -2.97 0.00 0.02 89.98 0.15 89.85 -2.66 -14.58 -1.46 -2.97
-3.30 -5.90 -0.25 -12.91 -11.80 0.41 -5.48 95.48 -18.17 108.17 -3.27 -5.83 -13.05 -12.15
-2.46 -9.11 0.00 -2.22 -4.78 0.00 0.01 89.99 0.01 89.99 -2.46 -9.11 -2.22 -4.78
-1.11 -1.48 0.01 -4.59 -11.86 -0.10 1.29 88.71 -0.77 90.77 -1.11 -1.48 -4.59 -11.85  

which not exceed the limit one. 

 

Verification of limit state of stress limitation in concrete 

The serviceability limit states checked in this section are relative only to stress limitation, 
ensuring that, under service load conditions, concrete extreme stresses do not exceed the 
corresponding limit, for the quasi-permanent and the rare combinations. The limit stresses 
for concrete are: 

Quasi-permanent combination: Compressive stress = 0.4 × fck = 14.00 MPa 

Rare combination: Compressive stress = 0.6 × fck = 21.00 MPa 

Applying to the structural FEM model the variable loads and combining them 
according to the railway code provisions, one obtain the maxima stress values at top and 
bottom fibres that have to be lower than the corresponding limit.  One reports the results 
relative to the four elements indicated in Fig. 6.32. 

Quasi-Permanent Combination  

Table 6.9 

Elem. h n 22 n 33 n 23 m 22 m 33 m 23

[m] [kN/m] [kN/m] [kN/m] [kNm/m] [kNm/m] [kNm/m]

648 1.5 -2420 -10152 4 -236 -1576 4
93 0.963 -6233 -6347 50 589 108 -37

320 1.5 -3539 -7855 2 81 233 4
589 1.5 -2736 -7900 -3 -151 -396 0   

σ1,b σ2,b σ1,t σ2,t

[Mpa] [Mpa] [Mpa] [Mpa]

-2.24 -10.97 -0.98 -2.57
-2.65 -5.86 -10.31 -7.37
-2.14 -4.62 -2.58 -5.86
-2.23 -6.32 -1.42 -4.21  

Rare Combination  

Table 6.10 

Elem. h n 22 n 33 n 23 m 22 m 33 m 23

[m] [kN/m] [kN/m] [kN/m] [kNm/m] [kNm/m] [kNm/m]

648 1.5 -2238 -10270 3 -226 -615 4
93 0.963 -6284 -6033 4 577 -133 -62

320 1.5 -2604 -7479 7 7 1279 -9
589 1.5 -3791 -8243 -55 -689 -1275 -26   

σ1,b σ2,b σ1,t σ2,t

[Mpa] [Mpa] [Mpa] [Mpa]

-2.09 -8.49 -0.89 -5.21
-2.76 -7.02 -10.29 -5.51
-1.72 -1.58 -1.75 -8.40
-4.36 -8.89 -0.69 -2.09  

 

Verification of Serviceability Limit State of Cracking 

The characteristic crack width should be calculated according to the provisions of Model 
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Code 90.  It has be notice, however, that from stress calculation neither for the quasi-
permanent combination nor in the rare one, the maximum stress results tensile. Therefore, 
no specific reinforcement is required and it is sufficient to arrange the minimum amount of 
reinforcing steel, able to ensure a ductile behaviour in case of corrosion of prestressing 
steel. 

Deformation 

Deformation limitation is carried out to control the maximum vertical deflection for 
passengers comfort. The limit values δ/L (deflection/span Length) are given by the 
Eurocode 1.3 as a function of the span length and the train speed.  The limit value for 
maximum vertical deflection is calculated considering a span length of 27.75 m (central 
span) and a train speed over 280 km/h; according to the provisions of the Code, it results: 

 δ
L

=
1

1600
 

that should be multiplied by a factor 1.1 for continuous structures; finally, the following 
limit may be achieved: 

 δ lim .
L

= =
11

1600
1

1455
 

As a consequence of the transient nature of this event, the elastic deflection, calculated 
by the FEM model, is relative to the only live load; the check shall be performed loading 
only one track, reading the maximum deflection in correspondence of the track axis.  
Having loaded the right track with a LM71 load model plus dynamic allowance, placed in 
the middle of the of the central span, the obtained δ/L value is: 

 δeffective

L
= =

0 0055
27 75

1
5045

.
.

 

and it results lower than the corresponding limit. 

It can be notice that no further calculation is requested because, due to prestressing 
effect, the structure remains entirely compressed, so that the elastic value, calculated by the 
FEM analysis, has to be considered. 

 

6.15.5 Verification of Ultimate Limit State 

Verification at ULS should regard the structure as a whole and its component parts, 
analysing the resistance of the critical regions.  In addition to the analysis of ULS of 
several shell element under the relevant combination of internal actions, in this example 
some case of detailing are investigated, i.e.: 

− bursting force at anchorage of prestressing tendon; 

− spalling force at anchorage of prestressing tendon; 

− punching under support plate. 



EC2 – worked examples  6-58 

Table of Content 

Slab ultimate limit state 

Verification at ULS has been performed adopting the sandwich model for shell elements.  
The internal actions in a shell element at ULS are sketched in Fig. 6.49. 

 
Fig. 649  Internal actions at ULS in a shell elements 

Let us consider in this section only four elements on the whole (see Fig.6.32).  The 
external actions are derived from FEM model using the load step for trains which leads to 
the maximum values and combining the results according to the relevant combination 
formula.  For the investigated elements, turns out (on brackets the notation of Fig. 6.49): 

Table 6.11 

Elem. h n Sd,y n Sd,x n Sd,xy m Sd,y m Sd,x m Sd,xy v Sd,y v Sd,x

( n 22 ) ( n 33 ) ( n 23 ) ( m 22 ) ( m 33 ) ( m 23 ) ( v 13 ) ( v 12 )
[m] [kN/m] [kN/m] [kN/m] [kNm/m] [kNm/m] [kNm/m] [kN/m] [kN/m]

648 1.5 -1779 -9096 5 -239 470 -14 -6 -5
93 0.963 -5746 -4610 -63 499 -671 -75 89 -150

320 1.5 -2130 -5922 10 38 3241 -13 20 47
589 1.5 -3865 -7748 -54 -1950 -4274 -41 -1124 -1095  

As first step, one may design the inner layer checking if specific shear reinforcement is 
required or not.  In fact, it is possible to calculate the principal shear vo

2 =  vx
2 + vy

2 , on the 
principal shear direction ϕo (such that tan ϕ0 = v vy x ), and to check that it turn out: 

 ( )v < v0 1
1 3012 100Rd ckf d= . ξ ρ   

where vRd1 is specified in chapter 6.4.2.3 of MC 90 and ρ ρ ϕ ρ ϕ= +x o y osincos2 2 .  If the is 
not satisfied, specific shear reinforcement shall be arranged (vertical stirrups) and diagonal 
compressive forces in concrete shall be checked. According to CEB Bulletin 223, and 
having set a minimum amount of longitudinal and transverse reinforcement in the bottom 
and top layer of As,x = As,y = 22.6 cm2/m placed at 0.07 m from the external face, the 
following table may be calculated for the elements considered. 

 

Table 6.12 
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Elem. d ϕo ρo v o v Rd1 θ F Scw F Rcw As/s
2 n xc n yc n xyc

[m] [°] [-] [kN/m] [kN/m] [°] [kN/m] [kN/m] [cm2/m2] [kN/m] [kN/m] [kN/m]

648 1.43 51.18 0.00158 7 417 26.56 - - - 0.0 0.0 0.0
93 0.893 -30.77 0.00253 174 327 26.56 - - - 0.0 0.0 0.0

320 1.43 23.14 0.00158 51 417 26.56 - - - 0.0 0.0 0.0
589 1.43 45.76 0.00158 1569 417 26.56 3509 13860 14.0 763.9 805.6 784.5  

with variation of slab components due to vx and vy (i.e. nxc , nyc and nxyc ) only for element 
number 589. 

The outer layers should be designed supposing an initial thickness for both layers not 
lesser than twice the concrete cover evaluated at the centroid of reinforcement.  One 
assumes: 

 ts = ti = 2×0.07 = 0.14 m 

so that, internal lever arm z and in plane actions may be evaluated for the outer layers of 
each element referring to Fig. 6.50 and by means of the following equations: 

 
Fig. 6.50 Internal forces in the different layers 

n n z y
z

m
z

v
vSdx s x

s x
, cot=

−
+ +

⎛
⎝
⎜

⎞
⎠
⎟

1
2

x
2

0

θ   n n z y
z

m
z

v
vSdx i x

i x
, cot=

−
− +

⎛
⎝
⎜

⎞
⎠
⎟

1
2

x
2

0

θ  

n n z y
z

m
z

v
vSdy s y

s y
, cot=

−
+ +

⎛

⎝
⎜

⎞

⎠
⎟

1
2

y
2

0

θ   n n z y
z

m
z

v
vSdy i y

i y
, cot=

−
− +

⎛

⎝
⎜

⎞

⎠
⎟

1
2

y
2

0

θ  

v x y

0
Sd s xy

s xyn z y
z

m
z

v v
v, cot=

−
− +

⎛
⎝
⎜

⎞
⎠
⎟

1
2

θ  v x y

0
Sd i xy

i xyn z y
z

m
z

v v
v, cot=

−
+ +

⎛
⎝
⎜

⎞
⎠
⎟

1
2

θ  

where terms on brackets have be summed if shear reinforcement is required. In the design 
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procedure is convenient to reach the minimum amount of reinforcement, so that a value of 
45° for θ angle may be adopted. 

For the chosen elements it turns out: 
Table 6.13 

Elem. h ts ti tc ys yi z n Sdy,s n Sdx,s vSd,s n Sdy,i n Sdx,i vSd,i

[m] [m] [m] [m] [m] [m] [m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]

648 1.5 0.140 0.140 1.220 0.680 0.680 1.360 -713.5 -4893.3 13.0 -1065.1 -4202.2 -7.7
93 0.963 0.140 0.140 0.683 0.412 0.412 0.823 -3479.6 -1489.8 59.3 -2266.7 -3120.5 -122.3

320 1.5 0.140 0.140 1.220 0.680 0.680 1.360 -1093.1 -5344.2 14.8 -1037.3 -577.9 -4.4
589 1.5 0.140 0.140 1.220 0.680 0.680 1.360 307.0 32.7 787.8 -2560.7 -6252.6 726.9  

At this stage each layer may be designed by applying the following equations (θ = 45°): 

 σ
θ θc cdt f t= ≤
v

sin
Sd

cos 2  safety verification on concrete side  

 nRdx = nSdx + vSd cot θ required resistance along x direction  

 n nRdy Sdy
Sd= +

v
cotθ

 required resistance along y direction  

from which, if result satisfied, the reinforcement areas may be calculated as: 

 Asx =
n
f
Rdx

yd

 ; Asy =
n
f
Rdy

yd

 

If concrete strength requirement is not satisfied, an increase layer thickness shall be 
provided until verification is met; in this case new values for the layer action having 
changed z value. 

It can be notice that if nRdx or nRdy value are negative, a compression force is present 
along that direction and no reinforcement is required; if both the nRdx and nRdy are negative 
it is possible to omit the reinforcement in both the directions but, in this case the 
verification is performed along the principal compression direction in the concrete 
subjected to biaxial compression and the checking equation is: 

 
( )

σc
Sdx Sdy Sdx Sdyt

n n n n
v t=

+
+

−
+ ≤

2 4

2

Sd
2

cd1f  

For the considered elements, one obtains: 

  

 

 

 

 
Table 6.14 
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Top Layer Design Bottom Layer Design
Elem. σc f cd1/2 Asy Asx σc f cd1/2 Asy Asx

[MPa] [kN/m] [cm2/m] [cm2/m] [MPa] [kN/m] [cm2/m] [cm2/m]

648 -35.0 -17.1 0.0 0.0 -30.0 -17.1 0.0 0.0
93 -24.9 -17.1 0.0 0.0 -22.4 -17.1 0.0 0.0

320 -38.2 -17.1 0.0 0.0 -7.4 -17.1 0.0 0.0
589 -11.3 -12.0 25.2 18.9 -45.6 -17.1 0.0 0.0  

It can be notice that verification for concrete in compression is not satisfied for any layers 
except for element 589 top layer and element 320 bottom layer. Thus, an increasing of 
layer thickness is required and new values of plate actions are obtained: 

Table 6.15 

Elem. h ts ti tc ys yi z n Sdy,s n Sdx,s vSd,s n Sdy,i n Sdx,i vSd,i

[m] [m] [m] [m] [m] [m] [m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]

648 1.5 0.300 0.240 0.960 0.600 0.630 1.230 -716.6 -5040.8 14.1 -1062.0 -4054.7 -8.8
93 0.963 0.220 0.190 0.553 0.372 0.387 0.758 -3588.5 -1465.5 66.5 -2157.8 -3144.8 -129.4

320 1.5 0.340 0.140 1.020 0.580 0.680 1.260 -1179.8 -5768.3 16.0 -950.6 -153.8 -5.5
589 1.5 0.140 0.430 0.930 0.680 0.535 1.215 708.7 870.1 794.7 -2962.5 -7090.0 720.0  

which lead to the following values: 
 Table 6.16 

Top Layer Design Bottom Layer Design
Elem. σc f cd1/2 Asy Asx σc f cd1/2 Asy Asx

[MPa] [kN/m] [cm2/m] [cm2/m] [MPa] [kN/m] [cm2/m] [cm2/m]

648 -16.8 -17.1 0.0 0.0 -16.9 -17.1 0.0 0.0
93 -16.3 -17.1 0.0 0.0 -16.6 -17.1 0.0 0.0

320 -17.0 -17.1 0.0 0.0 -6.8 -17.1 0.0 0.0
589 -11.4 -12.0 34.6 38.3 -16.8 -17.1 0.0 0.0  

Of course, minima values should be adopted for Asx and Asy if no reinforcement areas 
are required. For element 589, the Asx and Asy value are required at the centroid of the 
layer, whereas they are arranged at 0.07 m from the external surface of the slab in an 
eccentric position with respect to middle plane of the layer; so, the amount of 
reinforcement provided has to be changed to restore equilibrium conditions. This variation 
may be assessed with the aid of the mechanism pictured in Fig. 6.51: 
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Fig. 6.51 Shell element equilibrium in one direction with two reinforcement layers only 

The new forces acting on the reinforcements become: 

 n
n h t b n t b

zs

Sd s
s

i Sd i
i

i

=
− − ′⎛

⎝⎜
⎞
⎠⎟

+ − ′⎛
⎝⎜

⎞
⎠⎟, ,2 2   

 ni = nSd,s + nSd,i  ns  

For the investigated elements, the following areas have been detected. 
Table 6.17 

 

Forces referred to tension steel level Top layer reinf Bottom layer reinf
Elem. n s,y n i,y n s,x n i,x Asy Asx Asy Asx

[kN/m] [kN/m] [kN/m] [kN/m] [cm2/m] [cm2/m] [cm2/m] [cm2/m]

648 -702.5 -1070.8 -5026.6 -4063.6 0.0 0.0 0.0 0.0
93 -3522.0 -2287.2 -1399.0 -3274.3 0.0 0.0 0.0 0.0

320 -1163.8 -956.1 -5752.3 -159.3 0.0 0.0 0.0 0.0
589 1503.5 -2242.5 1664.8 -6370.0 34.6 38.3 0.0 0.0  

The previous procedure should be repeated for all the elements of the structural model 
finding the amount of reinforcement to provide in the slab; it is useful, to control the 
structural behaviour and for a best fitted reinforcement layout, to summarise the results in a 
visual map. 

 

Verification to Bursting Force 

For the calculation of the bursting force the symmetric prism analogy is used, evaluating 
the height of the prism so that his centroid results coincident with the centroid of 
prestressing tendons. For the sake of simplicity, only the longitudinal direction of 
prestressing tendon is considered with respect to the vertical plane, but transverse force due 
to bursting effect should be also calculated in the horizontal plane and for transverse 
prestressing too. 
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Fig. 6.52 Geometric dimension for bursting calculation 

Checking situation is represented in Fig. 6.52, and the most unfavourable situation 
occurs when a single tendon is tensioned; considering the lower level of tendon (first 
tensioned) the height of the prism results: 

 hbs = 2×0.6 = 1.2 m 

and his length, for end anchored tendon, is: 

 lbs = hbs = 1.2 m 

while the width follows from the possible enlargement of the anchor plate that may be 
assumed equal to 0.43 m, corresponding to the transverse spacing of longitudinal lower 
tendons. 

The design force per tendon has been evaluated by means of the following expression: 

 ( )F
f
.

ASd
ptk

sp= = × × =−

115
1800
115

139 19 10 3

.
4134 kN  

The bursting force follows from the moment equilibrium along section A-A: 

 N
z

Fbs
bs

Sd=
+ −0 5 1 2 2 1 1

1
. ( )n n t n t

γ = 852.6 kN  

where: 

t1 = 0.075 m distance between the centroid of tendons above section A-A to the centroid 
of the prism; 

t2 = 0.300 m distance between the centroid of concrete stress block above section A-A 
to the centroid of the prism; 
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n1 , n2 numbers of tendons above and below section A-A, respectively: 
considering the anchor plate as rigid a value of 0.5 may be assumed; 

γ1 =1.1 supplementary partial safety factor against overstressing by overpumping. 

Bursting force shall be resisted by an area of reinforcement steel of: 

 As,bs = Nbs / fyd = 19.61 cm2  

distributed within lbs/3 to lbs ,(i.e. from 0.40 m to 1.20 m) from the anchor plate. Thus the 
effective area on a meter length, may be found by the following: 

 
( )

A
s s

A

b
s bs s bs, , .

.43 . .4×
=

×
=

−
=2

3

19 61
0 1 20 0lbs

57.0 cm2/m2  

that may be provided with ties having diameter of 22 mm and spacing both transversally 
and longitudinally of 250 mm (see Fig. 53); in fact φ22/25×25 corresponds to 60.82 
cm2/m2 . 

 
Fig. 53 Bursting reinforcement arrangement 

 

Verification to spalling force 

The spalling force may be calculated with the equivalent prism analogy. As for bursting 
verification, only the longitudinal direction is considered;  furthermore, spalling effects 
arise if upper tendon are tensioned firstly (the eccentricity leads to tension stresses). Thus, 
a section with a breadth of 0.43 m and a height of 1.50 m has to be verified for one tendon 
tensioning. 

The length of the prism for end anchored tendon, is equal to the overall height of the 
section, i.e. lsl = 1.50 m. Considering an eccentricity for upper prestressing tendon of 
0.35 m, the extreme stresses at the end of prism length are calculated by means of the beam 
theory; for a prestressing force FSd = 4134.0 kN  they result (negative if compressive): 

 
σ

σ

top

bott

MPa

MPaom
.43 .

.
.43 .

.

.

⎫
⎬
⎪

⎭⎪
= −

×
×

×
⎛
⎝
⎜

⎞
⎠
⎟ =

−

+

⎧
⎨
⎪

⎩⎪
FSd

1
0 1 50

0 35 6
0 1 50

15 38

2 56
2∓  

The section along which no shear force results, is placed at 0.428 m from slab bottom fibre 
(see Fig 54) and the moment for equilibrium turns out: 
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 Msl bott= × × × =
2
3

0 214 0 102 3σ om . .43 33.61  kNm 

 
Fig. 54  Calculation scheme for spalling 

Assuming  zsl = 0.5× lsl and bsl = 0.43 m, the maximum spalling force turns out: 

 Nsl  = Msl / zsl = 44.81 kN 

Disregarding any concrete tensile resistance, the amount of reinforcement is: 

 As = Nsl / fyd = 1.031 cm2 

placed parallel to the end face in its close vicinity. 
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SECTION 7. SERVICEABILITY LIMIT STATES – WORKED EXAMPLES 

EXAMPLE 7.1 Evaluation of service stresses  [EC2 clause 7.2] 

Evaluate the normal compressive force and of the associated bending moment in the section 
of Figure 7.1,  with the boundary conditions 

a)  
c

c 2 ck

(y h) 0;         
(y 0) k f ;

σ = =
σ = =             b)

c 1 ck

s 3 sk

( y 0) k f
(y d) k f

σ = =
σ = =  

Then, evaluate the materials strains from the stresses c)  

N0 = -800 kN; M0 = 400 kNm. 

Finally, calculate the couples M, N associated to the three paths d) M/N = -0.5m; e) N = N0 
= -800 kN; f) M = M0 = 400 kNm, that, linearly changing M N, or M, N, respectively with 
constant normal force or constant bending, keep the section to the ultimate tension state 
under load. 

 
Fig. 7.1. Rectangular section, calculation of service stresses. 

The following data are given: 

fck =30 MPa, fyk = 450 MPa, αe = 15. 

Considering Fig. 7.1, we have  

d = 550 mm; d’ = 50 mm; h = 600 mm As = 6 ⋅ 314= 1884 mm2; β = 1 

The boundary conditions from the first exercise set the neutral axis on the border of the 
bottom section, that is yn = h. For this value it results 

( )
3 2 2 2

2

600400 400 600 300 15 1884 50 55012e 300
600400 15 1884( 600)2

⎡ ⎤⋅ + ⋅ ⋅ + ⋅ +⎣ ⎦= +
− ⋅ + ⋅ −

  

and then e =-120.65 mm, * 6 3
ynS 88.96 10 mm= − ⋅ . 

The second condition in the first exercise, assuming k2 = 0.45, can be written as 

6

N( 600) 0.45 30
88.96 10

−
= − ⋅

− ⋅  
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and then 

N=-2001.16kN,     M=N⋅e=-2001.16⋅(-120.65) ⋅10-3  = 241.49 kNm. 

The tension stress postulated by the second exercise gives the following expression for the 
neutral axis 

n
3 yk

e 2 ck

d 550y 235.71mmk f 0.8 45011 15 0.6 30k f

= = =⋅
++

⋅ ⋅α

 

and the compressed steel tension and the stress components are 

' n
s s s s

n

d ' y 50 235.7 0.59
d y 550 235.7

− −
σ = σ = σ = − σ

− −  

N = -0.6⋅30⋅400⋅235.7/2+0.8⋅450⋅1884⋅(1-0.59) ⋅10-3 = -570.48 kN 

M = (-0.6⋅30⋅400⋅235.7/2⋅(235.7/3-300)+0.8⋅450⋅1884⋅(1-0.59) ⋅250) ⋅10-6 = 457.5 kNm 

e = - 457.5·106/570.48·103 = - 801.95 mm 

Considering the third exercise 

 3400e 10 500 mm
800

−= − ⋅ = − and 
( ) ( )

[ ]

2 23
n n n

n
2
n n

400 y 15 1884 550 y 50 y
3 y 200400 y 15 1884 600 2 y

2

⎡ ⎤+ ⋅ − + −⎣ ⎦
+ = −

− + ⋅ − ⋅
 

this equation is iteratively solved: 

yn = 272.3 mm, * 3 3
ynS 13263 10 mm= − ⋅  

and then the tensional state is 
3

c 6

800 10 ( 272.3) 16.42MPa
13.263 10
⋅ −

σ = − = −
− ⋅

 

s
16.42 (550 272.3) 15 251.18MPa
272.3

σ = ⋅ − ⋅ =  

'
s

16.42 (50 272.3) 15 201.07MPa
272.3

σ = ⋅ − ⋅ = −  

Because the condition e = -500 mm implies that the neutral axis position is lower than the one 
previously evaluated assuming the maximal stresses for both materials, the ultimate tension 
state corresponds to the maximal tension admitted for concrete. If we consider to change M, 
N keeping constant the eccentricity, the tensional state change proportionally and we can state  

ck

0 0 c

0.6fN M 1.096
N M

= = =
σ . 

Once the concrete ultimate compressive limit state is reached, the stress is  

N= 1.096N0 = -876.80 kN; M = 1.096 M0 =438.4 kNm. 
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Working with constant normal force (N = N0) the ultimate limit state for the concrete tension 
leads to 

0 n
ck*

yn

N ( y ) 0.6f
S
−

= −  

and then 

[ ]
n

3
2
n n

y 0.6 30
400 800 10y 15 1884 600 2 y
2

− ⋅
=

⋅− + ⋅ − ⋅  

Solving with respect to yn  

 

2
n n

2
n

'
s

s

y 60y 84795 0

y 30.25 30.25 84795 262.51mm
(50 262.51)0.6 30 15 218.57MPa

262.51
(550 262.51)0.6 30 15 295.69MPa

262.51

+ − =

= − + + =
−

σ = ⋅ ⋅ ⋅ = −

−
σ = ⋅ ⋅ ⋅ =

 

and then  

6400 262.51 262.51M 0.6 30 300 1884 (295.69 218.57) 250 10 442.56kNm
2 3

−⋅⎡ ⎤⎛ ⎞= − ⋅ ⋅ ⋅ − + ⋅ + ⋅ ⋅ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
6

3

442.56 10e=- 553.2mm
800 10

⋅
= −

⋅
 

Keeping constant the bending moment (M = M0), the limit state condition for the concrete 
stress is 

n
ck*

yn

N( y ) 0.6f
S
−

= −   and then  
0 0 n

*
ck yn

M M (y )e
N 0.6f S

= =
⋅  

and  
*
yn 0 n

n* *
yn ck yn

I M (y ) hy
S 0.6 f S 2

− + =
⋅ ⋅   As  

6
6 30

ck

M 400 10 22.22 10 mm
0.6 f 0.6 30

⋅
= = ⋅

⋅ ⋅
 

the previous numeric form becomes 

( ) ( )

[ ]

2 23 6
n n n n

n
2
n n

400 y 15 1884 550 y 50 y 22.22 10 y
3 y 300400 y 15 1884 600 2 y

2

⎡ ⎤+ ⋅ − + − − ⋅ ⋅⎣ ⎦
+ =

− + ⋅ − ⋅
 

and iteratively solving  
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n

'
s

s

y 395mm
(50 395)0.6 30 15 235.82 MPa

395
(550 395)0.6 30 15 105.95 MPa

395

=
−

σ = ⋅ ⋅ ⋅ = −

−
σ = ⋅ ⋅ ⋅ =

 

6

400 395N 0.6 30 1884 (105.95 235.82) 1666.67kN
2

400 395 395M 0.6 30 300 1884 (105.95 235.82) 250 10 400.34 kNm
2 3

−

⋅⎡ ⎤= − ⋅ ⋅ + ⋅ + = −⎢ ⎥⎣ ⎦
⋅⎡ ⎤⎛ ⎞= − ⋅ ⋅ ⋅ − + ⋅ + ⋅ ⋅ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

e=-240 mm 

Figure 7.2 reports the results obtained in the evaluation in terms of forces and stresses. 

Fig. 7.2.  Results for different limit distributions of stresses. 

As a remark, just in the case c) the concrete tension limit state under load is not reached while 
in the case a)(k1=0.45) and the other cases b) d) e) f) (k1=0.65) respectively reach the tension 
ultimate states under load associated to non linear viscosity phenomena and minimal tension 
in the presence of particular combinations. On the other hand, the tension ultimate state 
under load for tied steel is got just in the case b). 
2B 
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EXAMPLE 7.2 Design of minimum reinforcement [EC2 clause 7.3.2] 

Let’s consider the section in Figure 7.3 with the following geometry: 

A = 1.925·106 mm2 ; yG =809 mm; I = 71.82·1010 mm4; 

Wi = 7.25·108 mm3; r2 = I/A =39.35·104 mm2 

 
 Fig. 7.3. Box - section, design of minimum reinforcement. 

Evaluate the minimum reinforcement into the bottom slab in the following cases: 

•Application of the first cracking moment Mcr 

•Application of an axial compressive force N = -6000 kN, applied in the point P at  250 
mm from the bottom border of the corresponding cracking moment. 

Consider the following data: 

fck = 45 MPa;   fct,eff  = 3.8 MPa;  σs = 200 MPa;  k =0.65 (hw  > 1m) 

The given statements imply: 

s 250 / 1800 0 .1388α = =  

f 300 / 1800 0 .1667α = =                  

s f1 0.6945β = − α − α =  
0
s,min 0.65 3.8/200 0.01235ρ = ⋅ =  

Case a) 

The application of cracking moment is associated to the neutral axis position yn = yG, and then 
809/1800 0.4494ξ = = . 

It results also  

s f1 0.4860
2

− α − α
= > ξ   

and for the web 

( )s,min
3 0.6945 2(1 0.1667 0.4494)0.01235 0.4 1 1 0.1667 0.4494 0.00208
4 1 0.4494

− − −⎡ ⎤ρ = ⋅ − − − =⎢ ⎥−⎣ ⎦
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2
s,minA 0.00208 300 1800 1123mm= ⋅ ⋅ =  

this reinforcement has to be put in the web tied area with height over the bottom slab a = 
1800 – 809 – 300 = 691 mm. 

We use (5+5)φ12 mm equivalent to 1130 mm2. 

Referring to the bottom slab we get  

f
91 0.8128− α = > ξ   

and it follows: 

s,min
2(1 0.4494) 0.16670.01235 0, 45 0.00943

1 0.4494
− −

ρ = ⋅ =
−  

2
s,minA 0.00943 300 1500 4243mm= ⋅ ⋅ =  

We use (14+14)φ14 mm equivalent to 4312 mm2. 

The reinforcement scheme is report in Figure 7.4 

 
Fig. 7.4.  Minimum reinforcement, case (a). 

Case b) 

The cracking moment associated to the axial force N = -6000 kN, with eccentricity eN=1800-
809-250 = 741 mm derives from the relation 

cr N ct ,eff i
i

N AM 1 e f W
A W

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

and then: 
3 6

8 6
cr 6 8

6000 10 741 1.825 10M 1 3.8 7.25 10 10 9585kNm
1.825 10 7.25 10

−⎡ ⎤⎛ ⎞⋅ ⋅ ⋅
= + + ⋅ ⋅ =⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

 

the eccentricity of the normal force in the presence of Mcr is then: 
3e 9585 10 6000 741 856 mm= − ⋅ + = −  

and the neutral axis position results from the relation 
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2 4

n G
r 39.35 10y y 809 1269mm
e 856

⋅
= − = + = , ξ = 0.7050 

Considering the web, with *

h 1.8
h

=  we deduce: 

( )s,min
0.6945 2(1 0.1667 0.7050)0.01235 0.4 1 1 0.1667 0.7050 0.00046

3 1.8(1 0.7050)
⎡ ⎤− − −

ρ = ⋅ − − − =⎢ ⎥⋅ −⎣ ⎦
 

2
s,minA 0.00046 300 1800 248 mm= ⋅ ⋅ =  

We use 4 φ10  equivalent to 314 mm2.  

The bars have to be located in the tied part of the web for an extension  

a = 1800-1269-300 = 231 mm  

over the bottom slab 

In the bottom slab we have: 

f
91 0.8128− α = > ξ   

and it results 

s,min
2(1 0.705) 0.16670.01235 0, 45 0.00797

1 0.705
− −

ρ = ⋅ =
−  

2
s,minA 0.00797 300 1500 3586 mm= ⋅ ⋅ =  

We use (12+12)φ14 mm equivalent to 3692 mm2. 

The reinforcement scheme is reported in Figure 7.5 

 
Fig. 7.5. Minimum reinforcement, case (b).  

3B 
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EXAMPLE 7.3 Evaluation of crack amplitude [EC2 clause 7.3.4] 

The crack width can be written as: 

s,crs
k 3 1 2 4

s s s

w 1 k c k k k
E

σ⎡ ⎤ ⎡ ⎤σ φ
= − ⋅ ⋅ + λ⎢ ⎥ ⎢ ⎥σ ρ⎣ ⎦ ⎣ ⎦

  (7.1) 

with 

s
s,cr t ct ,eff e

s

k f 1 ρλ ⎛ ⎞σ = ⋅ + α⎜ ⎟ρ λ⎝ ⎠  (7.2a) 

( ) 1 1min 2.5 1 ; ;
3 2
− ξ⎡ ⎤λ = − δ⎢ ⎥⎣ ⎦

 (7.3) 

Assuming the prescribed values k3=3.4, k4=0.425 and considering the bending case (k2=0.5) 
with improved bound reinforcement (k1=0.8), the (7.2) we get 

s,crs
k

s s s

w 1 3.4 c 0.17
E

σ⎡ ⎤ ⎡ ⎤σ φ
= − ⋅ ⋅ + λ⎢ ⎥ ⎢ ⎥σ ρ⎣ ⎦ ⎣ ⎦

 (7.4) 

The (7.4) can be immediately used as verification formula. 

As an example let’s consider the section in Figure 7.6 

 
Fig. 7.6. Reinforced concrete section, cracks amplitude evaluation 

assuming αe =15, d=548mm, d’=46.0mm, c=40mm, b=400mm, h=600mm, M=300kNm, 
As=2712mm2 (6φ24), As’=452mm2 (4φ12), fck=30MPa, fct,eff=fctm=2.9MPa 

Referring to a short time action (kt=0.6). 

It results then 

β=452/2712=0.167,   δ=548/600=0.913,   δ’=460/600=0.0767,    

ρs=2712/(400 ⋅ 600)=0.0113 

And the equation for the neutral axis yn is  

( )2
n n n

400 y 15 2712 548 y 0.167 46 y 0
2

−
+ ⋅ − + − =⎡ ⎤⎣ ⎦  

and then 
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2
n n

2 n
n

y 237.4y 113026 0
y 237.8y 118.7 118.7 113026 237.8mm , 0.3963
h 600

+ − =

= − + + = ξ = = =  

The second order moment results 

( ) ( )
n

2 2* 3 9 4
y

400I 237.8 15 2712 548 237.8 0.167 46 237.8 5.96 10 mm
3

⎡ ⎤= + ⋅ − + − = ⋅⎣ ⎦  

and we deduce  ( )6 9
s 15 300 10 548 237.8 /5.96 10 234MPaσ = ⋅ ⋅ ⋅ − ⋅ =  

the λ value to be adopted is the lowest between 2.5(1-0.913)=0.2175; (1-0.3963)/3=0.2012; 
0.5. Then λ=0.2012. 

The adopted statements lead to 

s,cr

k 5

0.2012 0.01130.6 2.9 1 15 57.08MPa
0.0113 0.2012

234 57.08 24w 1 3.4 40 0.17 0.2012 0.184mm
2 10 234 0.0113

⎛ ⎞σ = ⋅ + =⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤= − ⋅ ⋅ + =⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦ ⎣ ⎦

 

4B 
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EXAMPLE 7.4. Design formulas derivation for the cracking limit state  
[EC2 clause 7.4] 

8B7.4.1 Exact method 

It is interesting to develop the (7.4) to use it as a design formula. In particular, stated b, h, d, 
d’, b, and fixed M, we want to deduce the metal reinforcement amount As and its design 
tension σs  in order to have a crack amplitude wk lower than the fixed value kw . The 
adimensional calculus leads to 

( ) ( )2
e s e s

1 1 ' 0
2

− ξ − α ⋅ρ + β ξ + α ⋅ρ δ + β⋅δ =  (7.5) 

( )
( ) ( )

e ctm t
s 2 2 3

s

f k

2 3n '

α ν δ − ξ
σ =

⎡ ⎤⎡ ⎤⋅ρ δ − ξ + β δ − ξ + ξ⎣ ⎦⎣ ⎦
 (7.6) 

setting 

20
cr

t ctm

M M
b hM k f

6

ν = =
⋅  (7.7) 

Deducing ρs from (7.5) and with its substitution in the (7.6) we get 

( )

2

s
e2 1 '

ξ
ρ =

α − + β ξ + δ + βδ⎡ ⎤⎣ ⎦
 (7.8) 

( )
( ) ( ) ( )

3 2
e

2 2

2 p 3 p
' 1'

α ν δ − ξ − ξ ξ
=

δ + βδ − + β ξδ − ξ + β δ − ξ  (7.9) 

with  p=σs/(ktfctm) (7.10) 

From (7.4), where kw w= , after some calculations we deduce 
0
k

s

s

wp n
3.4 c 0.17

λ
= + +φ⋅λ ρ⋅ +

ρ
 (7.11) 

setting 
s k

0k
t ctm

E ww
k f

=  (7.12) 

Combining (7.8) and (7.11), the (7.9) is 

( )
( ) ( ) ( )

( )

( ) ( ) ( )

0 2
e ek

e2 22 2
e

2 3

2 2

2w ' 1
3.4 c 0.34 ' 1'

3 2
' 1 '

⎡ ⎤α ν δ−ξ α ⋅λ⋅ξ
= + δ+βδ − +β ξ +α ×⎡ ⎤⎢ ⎥⎣ ⎦⋅ ⋅ξ + α ⋅φ⋅λ δ+βδ − +β ξ ξ⎡ ⎤ ⎡ ⎤δ−ξ +β δ −ξ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤ξ ξ⎢ ⎥× +
⎢ ⎥δ+βδ − +β ξ ⎡ ⎤⎡ ⎤ δ−ξ +β δ −ξ⎣ ⎦ ⎣ ⎦⎣ ⎦
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 (7.13) 

the (7.13), numerically solved, allows the determination of the neutral axis position and then, 
using the (7.11) (7.8), the evaluation of the reinforcement tension and its amount. . If it is not 
the case, it is necessary to set in the (7.13) λ = 2.5(1-δ) and then re-evaluating ξ, being the 
value λ =0.5 practically impossible for bending problems. 

The procedure, aimed to the determination of the reinforcement amount and its tension 
corresponding to fixed crack amplitude values and stress level, requires to set before the value 
of the bars diameter φ. 

Alternatively, it is possible to set the tensional level σs, for example coincident with the 
permissible one, and to evaluate the corresponding reinforcement amount ρs and the maximal 
bars diameter. In this case, as the parameter p is defined, the neutral axis is obtained from 
(7.9), ρs from (7.7) and the maximal diameter derives from (7.11) solved with respect to φ, 
which assumes the form: 

s s ok
max

e s

5.88 w 2c
(p )

⎡ ⎤ρ ρ
φ = −⎢ ⎥λ − α ρ − λ⎣ ⎦

 (7.14) 

5B7.4.2 Approximated method  

The application of the procedure discussed above is quite laborious as it requires to iteratively 
solve the (7.13). An alternative procedure, easier to be applied, consist in the statement that 
the lever arm h0 is constant and independent from ξ and equivalent to 0.9d. In this way,  we 
have σsAs0.9d=M and then 

ρs=0.185ν/(pδ) (7.15) 

the (7.4) written for kw w=  immediately gives 

s e s
k

s s s

w 1 1 3.4c 0.17
E p

⎡ ⎤ ⎛ ⎞σ α ⋅ρλ φ⋅λ⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎢ ⎥ρ ⋅ λ ρ⎝ ⎠⎣ ⎦ ⎝ ⎠
 (7.16) 

aiming to a further simplification of the problem, let’s state δ=0.9,  λ = 0.243  

and assuming by definition  

* 1.181 1
0.185

ν ν
ν = =δ ⋅λ

− −
ν ν

           1
cu =
φ               

0k
2

wu =
φ  (7.17) 

the (7.16) after some algebra has the form 

[ ]2 e
1 e 1 2p 5 * 3.4u 0.20 p * 17 u 5u 0*

α⎡ ⎤ν+ ⋅ν − − ν α ⋅ + =ν ν⎢ ⎥⎣ ⎦  (7.18) 

the (11.67) is easy to solve, and together with the (7.15) and (7.11), leads to the desred values 
ρs e σs. 

In this case too, , if we set the value of σs, the solution for (7.18) with respect to φ leads to the 
relation 
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* *
e ok

max * 2
e

17c( p ) 5 w

p p

⎡ ⎤ν − α ν − ν⎣ ⎦φ =
να −ν

 (7.19)  

that defines the maximal bars diameter, which,, associated to the reinforcement amount given 
by the (7.15), allows to satisfy the cracking ultimate state corresponding to a fixed value of the 
steel tension. 
6B 
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EXAMPLE 7.5 Application of the approximated method [EC2 clause 7.4] 

Let’s use the described procedure to the section in Figure 7.7. 

 
Fig. 7.7. Reinforced concrete Section, reinforcement design for the cracking ultimate state. 

Assuming b=1000mm; h=500mm; c=50mm; φ=26mm; fck=33MPa; M=600kNm, design the 
section to have a crack amplitude kw 0.30mm,=  k kw 0.20mm, w 0.10mm= = . 

It results 

fctm=0.3.332/3=3.086MPa           δ=(500-63)/500=0.874 

M0
cr=0.6.3.086.(1000.5002/6).10-6=77.15kNm     (see ex. 7.1) 

ν=600/77.15=7.77     ν*=7.77/(1-1.18/7.77)=9.16     u1=50/26=1.92 

Defined 
max
kw 0.30mm= the maximal amplitude, in the three cases under examination we can 

set max
k k ww w k= ⋅  where kw = 1; 2/3; 1/3. Then in a general form 

5

0k w w
0.3 2 10w k 32404 k
0.6 3.086

⋅ ⋅
= ⋅ = ⋅

⋅
     2 w w

32404u k 1246 k
26

= ⋅ = ⋅  

[ ]2
w

7.77 0.20 15p 5 9.16 3.4 1.92 p 9.16 17 15 1.92 5 1246 k 0
9.16 7.77

⋅⎡ ⎤+ ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ + ⋅ ⋅ =⎢ ⎥⎣ ⎦
 

and then 
2

wp 235.93 p 4485 57067 k 0+ − − =  

and then 

( )w wp k 117.965 18400.74 57067 k= − + +  

Using the previous relation, together with the (7.15) and (7.10), in the three cases here 
considered 

kw = 1,     kw 0.3 mm= ,     p(1) = 156.75 

( )s
0.185 7.771 0.01049

156.75 0.874
⋅

ρ = =
⋅ ,     As (1) = 0.01049·500·1000=5245 mm2 

σs (1) = 0.6 · 3.086 · 156.75 = 290 MPa 

kw = 2/3,     kw 0.2 mm= ,     p (2/3) = 119.62 

( )s
0.185 7.772 3 0.01375

119.62 0.874
⋅

ρ = =
⋅ ,     As (2/3) = 0.01375·500·1000=6875 mm2 
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σs (2/3) = 0.6·3.086·119.62=221 Mpa 

kw = 1/3,     kw 0.1 mm= ,     p (1/3) = 75.48 

( )s
0.185 7.771 3 0.02179

75.48 0.874
⋅

ρ = =
⋅ ,     As (1/3) = 0.02179·500·1000=10895 mm2 

σs (1/3) = 0.6 · 3.086 · 75.48 ≅ 140 MPa 

The three sections are reported in Figure 7.7; the metal areas are overestimated, and 26 mm 
diameter bars are used. 

Let’s verify the adopted design method in order to evaluated its precision. The following 
results are obtained: 

kw = 1,   ρs = 5310/(500·1000) = 0.01062 

( )2
n n

1000 y 15 5310 437 y 0
2

− + ⋅ ⋅ − =  

2
n ny 159.3y 69614 0+ − =  

2
ny 79.65 79.65 69614 195.9 mm= − + + = ,     ξ = 0.3918 

( )
n

3
2 9 4

y
1000 195.9I 15 5310 437 195.9 7.13 10 mm

3
∗ ⋅

= + ⋅ ⋅ − = ⋅  

6
s 9

437 195.915 600 10 304 MPa
7.13 10

−
σ = ⋅ ⋅ =

⋅  

  

  

  
Fig. 7.8. Designed sections. 

kw = 1 
kw 0.3 mm=  

σs= 290 MPa 

kw = 2/3 
kw 0.2 mm=  

σs= 221 MPa 

kw = 1/3 
kw 0.1 mm=  

σs = 140 MPa 
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The lowest value for λ has to be chosen between 

λ = 2.5 (1 – 0.874) = 0.315;     λ = (1 – 0.3918) / 3 = 0.2027 

Then s,cr
0.2027 0.010620.6 3.086 1 15 63.11 MPa
0.01062 0.2027

⎛ ⎞σ = ⋅ ⋅ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

 

k 5
304 63.11 0.2027w 1 3.4 50 0.17 26 0.306 mm

304 0.010622 10
⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ ⋅ + ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠ ⎝ ⎠  

kw = 2/3   ,   ρs = 69.03 / (50 · 100) = 0.0138 

( )2
n n

1000 y 15 6903 437 y 0
2

− + ⋅ ⋅ − =  

2
n ny 207.1 y 90498 0+ − =  

2
ny 103.5 103.5 90498 214.6 mm= − + + =      ,     ξ = 0.4292 

( )
n

3
2 9 4

y
1000 214.6I 15 6903 437 214.6 8.41 10 mm

3
∗ ⋅

= + ⋅ ⋅ − = ⋅  

6
s 9

437 214.615 600 10 238 MPa
8.41 10

−
σ = ⋅ ⋅ =

⋅  

λ = (1 – 0.4292) / 3 = 0.1903 

s,cr
0.1903 0.01380.6 3.086 1 15 53.31 MPa
0.0138 0.1903

⎛ ⎞σ = ⋅ ⋅ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

 

k 5

238 53.31 0.1903w 1 3.4 50 0.17 26 0.213 mm
2 10 238 0.0138

⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ ⋅ + ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠ ⎝ ⎠
 

kw = 1/3,   ρs = 111.51 / (50 · 100) = 0.0223 

( ) ( )2
n n n

1000 y 15 9558 437 y 1593 385 y 0
2

− + ⋅ ⋅ − + ⋅ − =⎡ ⎤⎣ ⎦  

2
n ny 334.5 y 143704 0+ − =  

2
ny 167.2 167.2 143704 247.1 mm= − + + =      ,     ξ = 0.494 

( ) ( )
n

3
2 2 9 4

y
1000 247.1I 15 9558 437 247.1 15 1593 385 247.1 1.06 10 mm

3
∗ ⋅

= + ⋅ ⋅ − + ⋅ ⋅ − = ⋅  

6
s 9

437 247.115 600 10 160 MPa
1.06 10

−
σ = ⋅ ⋅ =

⋅  

λ = (1 – 0.494) / 3 = 0.1687 
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s,cr
0.1687 0.02230.6 3.086 1 15 41.78 MPa
0.0223 0.1687

⎛ ⎞σ = ⋅ ⋅ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

 

k 5

160 41.78 0.1687w 1 3.4 50 0.17 26 0.12 mm
2 10 160 0.0223

⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ ⋅ + ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠ ⎝ ⎠
 

The obtained values are in good agreement with those evaluated within the design.  

The values from the verification are slightly larger because of the fact that in the considered 
section  the internal drive lever arm is lower than the approximated value 0.9d assumed in the 
approximated design procedure. In fact, being h0/d the adimensional lever arm in units of 
effective height d, in the three case we have 

kw = 1        h0/d = (43.70 – 19.59/3) / 43.70 = 0.85 

kw = 2/3     h0/d = (43.70 – 21.46/3) / 43.70 = 0.836 

kw = 1/3     h0/d = [(18·160·18.99 + 3·160·13.792/18.99) / (18·160 + 3·160·13.79/18.99) + 

                            + 2/3·24.71] / 43.70 ≅ 0.8 

Let’s remark that the presence of a compressed reinforcement is highly recommended to 
make ductile the section in the ultimate limit state. The reinforcement increase the lever arm 
of the section reducing the difference between the approximated values and those coming 
from the verification. The approximated method previously discussed can be successfully 
applied in the design of the ultimate crack state. 

The obtained results are reported in the Tables 7.1 and 7.2 and they are shown in Figure 7.9. 
Table 7.3 and Figure 7.10 report numerical values and graphs for the maximal diameter and 
the required reinforcement expressed as a function of fixed values for σs. Stating a suitable 
precision for the approximated method, those values are evaluated using the (7.16) (7.14). 
             Table 7.1. Approximated method.                                                   Table 7.2.  Exact method.  

wk (mm) As (mm2) σs (MPa) h0/d    As (mm2) wk (mm) σs (MPa) h0/d 
0.1 11151 140 0.9  11151 0.120 160 0.811 
0.2 6903 221 0.9  6903 0.213 238 0.836 
0.3 5310 190 0.9  5310 0.306 304 0.85 

          

 
Fig. 7.9.  Comparison between the exact and approximated methods. 
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Table 7.3. Approximated method – Determination of maximum diameter. 

wk = 0.1 mm (A) wk = 0.2 mm (B) wk = 0.3 mm (C) 
σs 

(MPa) 
φmax 

(mm) 
As 

(mm2) 
σs 

(MPa) 
φmax 

(mm) 
As 

(mm2) 
σs 

(MPa) 
φmax 

(mm) 
As 

(mm2) 
137 30 11111 214 30 7001 280 30 5430 
140 26 11151 221 26 6903 290 26 5310 
145 20 10486 233 20 6508 309 20 4910 
149 16 10205 243 16 6245 325 16 4672 
156 10 9750 261 10 5816 355 10 4282 

 

 

Fig. 7.10. Diagrams for Maximal diameter (φmax) – Metal area (As ) – Steel tension (σs). 
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EXAMPLE 7.6 Verification of limit state of deformation 

Evaluate the vertical displacement in the mid-spam of the beam in Figure 7.11 with constant 
transversal section represented in Figure 7.12  

 
Fig. 7.11. deflected beam, deformation limit state.  

                  Fig. 7.12. Transversal section. 
Assume the following values for the main parameters 

fck=30MPa; g+q=40kN/m; g=2q; l=10m; As=3164mm2 (7φ24) ;  

and solve the problem firstly in a cumulative way, stating αe = Es/Ec=15. 

Referring to the stage I, as indicated in Figure 7.13,  

( )

( )

* 2

*
G

3
2* 2 9 4

I

9
* 7 3
i

A 700 500 15 3164 397460mm
700 500 350 15 3164 650y 385.8mm397460

500 700I 500 700 35.8 15 3164 650 385.8 18.05 10 mm
12

18.05 10W 5.745 10 mm
700 385,8

= ⋅ + ⋅ =

⋅ ⋅ + ⋅ ⋅= =

⋅
= + ⋅ ⋅ + ⋅ ⋅ − = ⋅

⋅
= = ⋅

−

 

From Table [3.2-EC2] we get 
2

3
ctmf 0.30 30 2.9MPa= ⋅ =  

and then the cracking moment results  
* 7 6

cr ctm iM f W 2.9 5.745 10 10 166.6kNm−= = ⋅ ⋅ ⋅ =  

Considering the whole applied load then 
2

max
40 10M 500kNm8

⋅= =  

max

cr

M 500 3
M 166.6

λ = = =  

 
Fig. 7.13.  Section at stage I. 

In the stage II, as reported in Figure 7.13,  



EC2 – worked examples  7-19 
 

Table of Content 

( )

( )

2
n

n

2
n n

2
n

3 2* 10 4
II

y500 15 3164 650 y 02
y 189.84y 123396 0

y 94.92 94.92 123396 269mm

269I 500 15 3164 650 269 1.01 10 mm3

− ⋅ + ⋅ ⋅ − =

+ − =

= − + + =

= ⋅ + ⋅ ⋅ − = ⋅

 

then 

c=18.05/10.13=1.78 

 
Fig. 7.14. Section at stage II. 

The evaluation of the middle-spam displacement can be easily obtained using the relation (7.1) 
here expressed as 

( ) ( ) ( )
( )I

I

v l 2v l 2 v l 2 1 v l 2
Δ⎛ ⎞= ⋅ +⎜ ⎟

⎝ ⎠
  (7.20) 

where vI is the displacement calculated in the first step and Δv(l/2) the increase of the 
displacement itself caused from the cracking, that can be expressed for symmetry reason 

( ) ( ) ( ) ( )
( )1 1

1 12 2
Mmax cr2 2

M 2
c I max

fM M zv 2 c 1 f g d d ,                =   
2 E I M g l∗ ξ ξ

⎡ ⎤ξ⎛ ⎞Δ = − ξ ξ ξ − β ξ ξ⎢ ⎥⎜ ⎟ ξ⎝ ⎠ ⎣ ⎦
∫ ∫    (7.21) 

where Ec  is assumed to be Ec =Es/15 in agreement with the introduced statement  for the 
parameter αe, . 

Defining the parameter λ=Mmax/Mcr and considering that fM(ξ) = ξ/2, g(ξ) = 4(ξ–ξ2), the 
equation  (7.21) is written as 

( ) ( )
1 1

1 12
2 3max 2 2

2
c I

M dv c 1 4 d
2 E I 4 1∗ ξ ξ

⎡ ⎤β ξ⎛ ⎞Δ = − ξ − ξ ξ −⎜ ⎟ ⎢ ⎥λ − ξ⎝ ⎠ ⎣ ⎦
∫ ∫  (7.22) 

Calculating the integrals on the right side of the equation we finally obtain 

( ) ( )
2

4 3max
1 1 12

c I

M 5 4v c 1 ln 2 1
2 E I 48 3 4∗

β⎛ ⎞ ⎡ ⎤Δ = − + ξ − ξ − − ξ⎡ ⎤⎜ ⎟ ⎣ ⎦⎢ ⎥λ⎝ ⎠ ⎣ ⎦  (7.23) 

The abscissa ξ1, where the cracked part of the beam start, is given solving the equation 

( )2 cr
1 1

max

M 14
M

ξ − ξ = =
λ  (7.24) 
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and then 1
1 11
2

⎡ ⎤λ −
ξ = −⎢ ⎥λ⎣ ⎦

 (7.25) 

Finally, considering that 
2

max
I

c I

M5v
48 E I ∗=  (7.26) 

The (7.20) is expressed as 

( ) ( )
2

4 3max
1 1 12

c I

M5 48 4 12v 1 c 1 1 ln 2 1
2 48 E I 5 3 5∗

⎧ ⎫β⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + ξ − ξ − − ξ⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥λ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
 (7.27) 

If the value of c previously calculated is inserted in the (7.27) stating β=1 and letting λ 
changing in the range 1≤λ≤∞, we obtain the curves reported in Figure 7.15, that show as the 
increase of the ratio λ means a decrease for ξ1 and the increase of v(l/2) as a consequence of a 
larger cracked part of the beam. 

In the same way, a concentrated load Q=200kN, producing the same maximal moment in the 
mid-spam section, leads to the following expression for the section displacement 

( ) ( )
2

3max
1 1* 2

c I

M l 3v 1 c 1 1 8 1 2
2 12E I

β⎡ ⎤⎛ ⎞ ⎡ ⎤= + − − ξ − − ξ⎜ ⎟ ⎢ ⎥⎢ ⎥λ⎝ ⎠ ⎣ ⎦⎣ ⎦
 (7.28) 

in this case 
2

1 max
c I

v M
12E I ∗=  (7.29) 

ξ1=1/(2λ). (7.30) 

The corresponding curves are reported in Figure 7.15. We observe as the displacements in the 
two cases of distributed and concentrated load are respectively 0.93 and 0.88 of the 
displacement calculated in the stage II. Furthermore, for the same Mmax, the displacement in 
case of concentrated load results to be lower because the linear trend of the relative bending 
moment is associated to a smaller region of the cracking beam with respect to the case of 
distributed load, that is characterized by a parabolic diagram of the bending moments. 

 
Fig. 7.15. Diagrams for v/v1 , ξ1 - λ. 

The same problems can be solved in a generalized form evaluating numerically the 
displacement following the procedure expressed in (11.51). In this way, it is possible the 
evaluation the deformation of the whole beam, varying z . The result, for a distributed load 
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and  for λ=3, is reported in Figure 7.6, where graphs refer to a 20 folders division for the 
cracking part of the beam. Remark as the committed error in the evaluation of the mid-spam 
deflection, as obtained comparing the values in Figure 7.15 and Figure 7.16, is about 4%. In 
particular, introducing the numerical values in the (7.26) (7.29) and using the results in Figure 
11.25, we have for the mid-spam displacement: 

•Distributed load 
6 8

1 5 9

5 500 10 10 15v 21.64mm
2 48 2 10 18.05 10

v 1.65 21.64 35.71mm
2

⋅ ⋅ ⋅⎛ ⎞ = ⋅ =⎜ ⎟ ⋅ ⋅ ⋅⎝ ⎠
⎛ ⎞ = ⋅ =⎜ ⎟
⎝ ⎠

 

a) Concentrated load 
6 8

1 5 9

1 500 10 10 15v 17.31mm
2 12 2 10 18.05 10

v 1.56 17.31 27.00mm
2

⋅ ⋅ ⋅⎛ ⎞ = ⋅ =⎜ ⎟ ⋅ ⋅ ⋅⎝ ⎠
⎛ ⎞ = ⋅ =⎜ ⎟
⎝ ⎠

 

 
Fig. 7.16. Deformation in the stage I (a), displacement increase caused by the cracking (b)  

And total deformation (c). 
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SECTION 11. LIGHTWEIGHT CONCRETE – WORKED EXAMPLES 

EXAMPLE 11.1 [EC2 Clause 11.3.1 – 11.3.2] 

The criteria for design of the characteristic tensile strength (fractile 5% and 95%) and of 
the intersecting compressive elastic module for light concrete are shown below, in 
accordance with the instructions of paragraphs 11.3.1 and 11.3.2 of Eurocode 2. 

Tensile strength 

The average value of simple (axial) tensile strength, in lack of direct experimentation, can 
be taken equal to: 

- for concrete of class ≤ LC 50/55   flctm = 0,30 flck
2/3 η1 

- for concrete of class > LC 50/55   flctm = 2,12 ln[1+(flcm/10)] η1 

Where: 

η1 = 0,40+0,60 ρ/2200 

ρ = upper limit value of the concrete density, for the corresponding density class expressed  
in kg/m3; 

flck = value of the characteristic cylindric compressive strength in MPa. 

flcm = value of the average cylindric compressive strength in  MPa. 

The characteristic values of simple tensile strength, corresponding to fractiles 0,05 e 0,95, 
can be taken equal to: 

fractile 5% :  flctk,0,05 = 0,7 flctm  

fractile 95% :  flctk,0,95 = 1,3 flctm 

Intersecting compressive elastic module 

In lack of direct experimentation, the intersecting compressive elastic module at 28 days, 
which can be used as an indicative value for design of the deformability of structural 
members, can be estimated by the expression: 

0,3
lcm

lcm E
fE 22000 η
10

⎡ ⎤= ⎢ ⎥⎣ ⎦
    [MPa] 

where: 

•flcm = value of the cylindric average compressive strength in MPa; 

•
2

E
ρη

2200
⎛ ⎞=⎜ ⎟
⎝ ⎠

; 

ρ = upper limit value of the concrete density, for corresponding density class  in kg/m3.The 
results of calculation of the two above-mentioned mechanical features are shown and 
compared in the following table, for two different types of light concretes and for the 
corresponding ordinary concretes belonging to the same strength classes. 
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Table 11.1 

 Concrete type 1 Concrete type 2 
 Light Ordinary Light Ordinary 

flck [MPa] 35 60 
ρ [kg/m3] 1650 2400 2050 2400 
flcm [MPa] 43 68 

η1 0,850 -- 0,959 -- 
ηE 0,563 -- 0,868 -- 

fctm [MPa] 2,7 3,2 4,2 4,4 
fctk;0,05 [MPa] 1,9 2,2 2,9 3,1 
fctk;0,95 [MPa] 3,5 4,2 5,4 5,7 
Elcm [MPa] 19168 34077 33950 39100 
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EXAMPLE 11.2 [EC2 Clause 11.3.1 – 11.3.5 – 11.3.6 – 11.4 – 11.6] 

The maximum moment that the reinforced concrete section of given dimensions, made of 
type 1 lightweight concrete, described in the previous example, is able to withstand when 
the reinforcement steel achieves the design elastic limit. The dimensions of the section are: 
b=30 cm, h=50cm and d=47cm. 

The section in question is shown in Fig. 11.1 together with the strain diagram related to the 
failure mode recalled, which implies the simultaneous achievement of maximum 
contraction side concrete and of the strain corresponding to the design yield stress of the 
tensioned reinforcement steel. 

In case one chooses, like in the previous example, to use the bilinear diagram to calculate 
the compressive strength on concrete, the limits of strain by compression have values εlc3 = 
1,75‰ and εlcu3 = 3,5η1 = 2,98‰. 

The design strain corresponding to steel yielding, for fyk= 450 MPa, is εyd = fyd /(1,15 x Es) 
= 450/(1,15 x 200000) = 1,96‰. The distance of the neutral axis from the compressed 
upper edge is therefore x = 28,3 cm.  

Two areas can be distinguished in the compressed zone: the first one is comprised between 
the upper edge and the chord placed at the level where the contraction is εlc3 = 1,75‰. The 
compressive stress in it is constant and it is equal to  flcd = 0,85 flck/γc = 19,8 MPa; the 
second remaining area is the one where compression on concrete linearly decreases from 
the value  flcd to zero in correspondence of the neutral axis. 

The resultant of compression forces is placed at a distance of around 10,5 cm from the 
compressed end of the section and is equal to C = 1185 kN. For the condition of 
equilibrium the resultant of compressions C is equal to the resultant of tractions T, to 
which corresponds a steel section As equal to As = T/fyd = 3030 mm2. The arm of internal 
forces is h’ = d – 10,5 cm = 36,5 cm, from which the value of the moment resistance of the 
section can eventually be calculated as MRd = 1185 x 0,365 = 432,5 kNm. 

 
Fig.11.1 Deformation and tension diagram of r.c. section, build up with lightweight concrete  

(flck = 35 MPa, ρ = 1650 kg/m3), for collapse condition in which maximum resisting bending moment is 
reached with reinforcement at elastic design limit. 
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